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Abstract. The utility of Large Language Models (LLMs) in analytical
tasks is rooted in their vast pre-trained knowledge, which allows them
to interpret ambiguous inputs and infer missing information. However,
this same capability introduces a critical risk of what we term knowledge-
driven hallucination: a phenomenon where the model’s output contra-
dicts explicit source evidence because it is overridden by the model’s gen-
eralized internal knowledge. This paper investigates this phenomenon by
evaluating LLMs on the task of automated process modeling, where the
goal is to generate a formal business process model from a given source ar-
tifact. The domain of Business Process Management (BPM) provides an
ideal context for this study, as many core business processes follow stan-
dardized patterns, making it likely that LLMs possess strong pre-trained
schemas for them. We conduct a controlled experiment designed to cre-
ate scenarios with deliberate conflict between provided evidence and the
LLM’s background knowledge. We use inputs describing both standard
and deliberately atypical process structures to measure the LLM’s fi-
delity to the provided evidence. Our work provides a methodology for
assessing this critical reliability issue and raises awareness of the need
for rigorous validation of Al-generated artifacts in any evidence-based
domain.

Keywords: Large Language Models - Hallucination - Generative Al -
Trustworthy AI - Process Modeling.

1 Introduction

The integration of Large Language Models (LLMs) and other foundation models
into analytical and data-driven workflows promises to automate complex tasks
and democratize access to specialized domains. A key capability driving this
transformation is the models’ ability to leverage vast, pre-trained knowledge to
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interpret ambiguous inputs, infer missing details, and generate coherent, struc-
tured outputs. This capacity for intelligent inference is fundamental to their
performance across a range of applications, from code generation to data anal-
ysis.

Reliance of an LLM on its internal knowledge base introduces a critical chal-
lenge that we term knowledge-driven hallucination. This conflict arises when the
explicit evidence provided in a user’s prompt (e.g., a source document, a dataset,
or a simple text) is inconsistent with the generalized patterns and “common
sense” knowledge the model has acquired during its training. In such situations,
the model faces a dilemma: should it remain faithful to the provided evidence,
even if it appears anomalous or counter-intuitive, or should it “correct” the out-
put based on its pre-trained understanding of what is typical or plausible?

The outcome of this conflict poses implications for the trustworthiness and
reliability of Al-driven systems. An LLM that prioritizes its internal knowledge
over explicit evidence may generate outputs that are dangerously misleading.
The generated artifact might appear well-formed, logical, and plausible, yet fail
to accurately represent the specific reality of the input data. This risk is par-
ticularly acute in specialized domains where processes, rules, or data may be
intentionally unconventional and deviate from established norms.

This paper investigates the knowledge-driven hallucination of LLMs through
a systematic, empirical study within the domain of Business Process Manage-
ment (BPM). The task of process modeling (i.e., generating a formal process
model from a source artifact) is particularly well-suited for our investigation due
to the nature of business processes themselves. Many core business operations,
such as purchase-to-pay, order-to-cash, or incident management, follow well-
established, standardized patterns across different organizations. Consequently,
it is highly probable that an LLM has been exposed to extensive documenta-
tion and descriptions of these standard processes during its training, endowing
it with a strong pre-trained “schema” of how such processes “should” operate.
This creates a powerful and realistic dilemma for our study: what occurs when
the evidence provided for a specific organization’s process directly contradicts
the generalized, common-sense model of that process residing within the LLM?

To isolate and quantify this conflict, we conduct a controlled experiment us-
ing a set of standard process models (M ™) that represent conventional process
flows. For each standard model, we create two deliberately conflicting variants:
a reversed model (M ™), where the sequence of activities is causally inverted,
and a shuffled model (M*), where the original activity labels are randomly per-
muted across the model’s structure. We then task an LLM to generate process
models from textual descriptions and event logs derived from these variants. By
comparing the generated models against both the source evidence and the con-
ventional standard model, we measure the degree to which the LLM adheres to
the provided evidence versus reverting to its internal knowledge.

The structure of this paper is as follows. discusses related work on
process modeling and LLM hallucinations. details our experimental
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methodology, while presents our findings. Finally, concludes
the paper and discusses the broader implications of our work.

2 Related Work

This section reviews related research, focusing on LLM hallucination and process
modeling techniques.

2.1 LLM Hallucination

The phenomenon of hallucination in LLMs—where models generate outputs
that appear plausible yet are factually incorrect—has been extensively studied
in the literature [30]. The underlying causes of such behavior can broadly be
categorized into three groups: hallucinations arising from data, from training,
and from inference [20].

LLMs are trained on two main types of data: pre-training data, which im-
parts general and factual knowledge [9], and alignment data, which instructs
models to follow human preferences and respond to user intent [29]. However,
the pre-training corpus is inherently limited and often biased toward general
knowledge |21], restricting the model’s ability to generalize to domain-specific
queries [7].

The training process itself imposes further constraints. Pre-training limits
the effective context length a model can utilize during inference [2522], leading
to incomplete conditioning on the user’s input. Moreover, fine-tuning with hu-
man feedback may encourage the model to favor responses that align with user
preferences, even when they are not strictly truthful [14124].

At inference time, LLMs generate output in an autoregressive manner, pre-
dicting the next token based on previously generated tokens and their internal-
ized knowledge [5]. As responses become longer, models are increasingly prone to
forgetting earlier parts of the prompt [3], which can degrade the coherence and
factuality of their outputs. Apart from that, flawed reasoning may also introduce
hallucinations. For instance, Berglund et al. [23] identify the “Reversal Curse”,
where a model that correctly answers “A is B” may fail when asked to infer “B
is A”.

2.2 Process Modeling

Business process modeling is the structured representation of the tasks, decisions,
and flow within a business process [I0]. Organizations often rely on process
models to document their workflows, and the creation of these models typically
involves collaboration between business analysts and domain experts to ensure
clarity and accuracy [11].

Traditionally, creating business process models required substantial manual
effort and expertise in complex modeling languages. To automate this, early ap-
proaches primarily relied on traditional Natural Language Processing (NLP) and
rule-based techniques [28]. These methods exploited dependency parsing, part-
of-speech tagging, and semantic role labeling to identify process elements from
unstructured text [27I8]. For instance, researchers combined NLP with compu-
tational linguistics to generate BPMN models [I2], used text mining to derive
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Table 1: Characteristics of the selected processes.

Process Ground Truth Petri Net
#Activities #Nodes Decisions Cycles Concurrency
Sales Order (pl) 8 26 X X
Booking System (p7) 13 49 X X X
Complaint Handling (p13) 9 21 X
Internal Audit (p16) 24 63 x x x

models directly from text [I], and applied NLP to extract structured process rep-
resentations [26]. However, these traditional methods were often hindered by the
inherent ambiguity and variability of natural language, necessitating significant
human intervention and preventing full automation [2].

The advent of LLMs has marked a paradigm shift in this domain. A signifi-
cant line of research investigates the use of LLMs for generating process models
directly from various inputs. Studies have demonstrated the ability of LLMs to
generate process models from unstructured text [I7J6] and to translate textual
descriptions into both procedural and declarative process model constraints [13].
Beyond direct generation, other methods explore more interactive approaches,
such as creating models through dialogue-based systems and chatbots [15].

3 Evaluation Methodology

Our methodology is designed to create a controlled environment where we can
systematically evaluate an LLM’s tendency for knowledge-driven hallucination.
The experiment consists of three main stages: (1) the generation of standard
and conflicting process artifacts, (2) the procedure for generating process models
using LLMs, and (3) the protocol for evaluating the generated models.

3.1 Artifact Generation

We base our experiments on four diverse business processes selected from the
benchmark presented in [I6]. For each of these processes, a set of ground truth
artifacts already exists, which we designate as the standard or ezpected versions:
a standard model (M), a corresponding natural language description (D), and
a simulated event log (LT). summarizes key dimensions of the selected
processes. For each process, we report the number of activities and the number
of nodes (transitions + places) in its ground truth Petri net. Furthermore, we in-
dicate whether the process contains key control-flow constructs: decision points,
cycles, and concurrency.

From these standard artifacts, we systematically generate two sets of con-
flicting evidence:

— Reversed Artifacts (M—, L~, D7): The reversed model (M) was cre-
ated by manually reversing all sequential dependencies in M. The reversed
log (L™) was generated by reversing the event order in each trace of L*.
Finally, the reversed description (D~) was created by manually adjusting
DT to match the new process flow of M.



Knowledge-Driven Hallucination in Large Language Models 5

Abbreviation Original Activity Label

A Receive customer inquiry
B Collect customer information

c Address customer concerns or questions

D Guide customer in selecting product/service
E Provide quote

F Place order

G Record order in system

H Send order confirmation to customer

(d) Mapping of abbreviations
used in the figures to the origi-
(c) Reversed process model (M ™). nal activity labels.

Fig. 1: Ground truth process models for the sales order process.

Listing 1: Reversed textual description (D™) for the sales order process.

First a confirmation of the order may be sent to the customer. If the customer
receives a confirmation, then the order is recorded in the system and the
order is placed. After that, the sales representative provides a quota and
the customer is guided in selecting product or services. However, all
previous steps can be skipped. Then, the sales staff or customer support
addresses any concerns or questions and collects relevant information, at
the same time. Finally, the department receives a potential customer inquiry
about a product or service.

— Shuffled Artifacts (M*, L*, D*): The shuffled model (M*) was created
by applying a random, bijective mapping of activity labels to the standard
model M, preserving its control-flow structure. The shuffled log (L*) was
created by applying the same mapping to the activity names in L*. The
corresponding description (D*) was then derived manually.

This setup provides us with six distinct input scenarios for the LLM: three
based on text descriptions (DT, D™, D*) and three based on event logs (L™, L™,
L*). To compactly represent event logs as textual input for LLMs, we generate
a textual abstraction for each log using the process mining library PM4Py [4].

To illustrate the conflicting artifacts, shows the standard, shuffled,
and reversed models for the sales order process. The corresponding reversed
description (D~) and the textual abstraction of the reversed event log (L~) are
provided in [Listing 1| and [Listing 2| respectively.
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Listing 2: The textual abstraction generated with PM4Py [4] for the reversed
event log (L™) for the sales order process.

Send order confirmation to customer -> Record order in system ->
Send order confirmation to customer -> Record order in system ->
Provide quote -> Guide customer in selecting product/service ->
Provide quote -> Guide customer in selecting product/service ->
Collect customer information -> Address customer concerns or questions ->
Address customer concerns or questions -> Collect customer information ->

Table 2: Characteristics of the evaluated LLMs, including open-source status,
reasoning capabilities, parameter estimates, announcement dates, and LiveBench
2025-07-30 https://livebench.ai/ leaderboard scores.

Model Open-Source|Reasoning Parameters Announcement LB Score
command-r X 35B 2024-08-30 27.15
gemini-2.5-flash X est. 400B, 20B act. 2025-06-17 64.42
gemini-2.5-pro X est. 15008, 40B act. 2025-06-17
gpt-4.1-nano est. 18B, 2B act. 2025-04-14 40.51
grok-3-fast est. 2700B, 50B act. 2025-04-09 56.05
grok-3-mini-fast X est. 250B, 35B act. 2025-04-09 62.36
kimi-k2 X ~ 1000B, 32B act. 2025-07-11 62.70
03 X est. 200B 2025-04-16

04-mini X est. 60B, 8B act. 2025-04-16 66.87
qwen3-235b-a22b X 235B, 22B act. 2025-07-25 64.72

3.2 LLM-based Model Generation Procedure

The characteristics of the large language models evaluated in this study are
summarized in We define two primary tasks for the LLMs:

— Text-to-Model Generation: The LLM is prompted to generate a pro-
cess model from each of the textual descriptions (D1, D~, D*). We utilize
the ProMoAI framework from [18], which generates models in the POWL
language [19] and subsequently converts them into Petri nets or BPMN di-
agrams for analysis.

— Log-to-Model Generation: The LLM is provided with the textual ab-
stractions of the event logs (L™, L™, L*) and is prompted to discover a
process model that explains the behavior in each log. This experiment was
also executed using the ProMoAl framework, with the event log abstraction
serving as the input process description.

To investigate the LLM’s sensitivity to prompting, we conducted all experi-
ments under two distinct conditions:

— Standard Prompt: The original, optimized prompt from ProMoAlI.

— Strict Adherence Prompt: The standard prompt is adjusted with an
explicit instruction for the LLM to disregard its background knowledge and
fully rely on the provided input.

To ensure that a quantitative comparison is meaningful and can be fully
automated, we standardize the activity labels across all experiments. For each
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process, the prompt provided to the LLM is extended to include the complete list
of valid activity labels. This experimental design focuses the evaluation purely
on the discovered control-flow structure, thereby removing any ambiguity that
could arise from the LLM generating synonymous or differently phrased activity
names.

3.3 Evaluation Protocol

Our evaluation protocol aims to quantify the tension between evidence adher-
ence and knowledge reversion. To measure the relationship between a generated
model and the ground truth variants, we compute their semantic similarity. This
is quantified using the behavioral-footprint similarity implemented in the PM4Py
library [4]. We acknowledge that more robust evaluation techniques, such as for-
mal conformance checking as proposed in [16], exist for assessing model quality.
However, the primary objective of our study is not to ascertain the absolute cor-
rectness of the generated models, but rather to perform a relative comparison.
Our goal is to determine which of the three ground truth variants (M, M~ or
M*) a generated model most closely resembles. The footprint-based similarity
metric is well-suited for this purpose, as our analysis focuses on identifying the
highest similarity score in each comparison rather than on the absolute values
of the scores themselves.

For each LLM-generated process model, we compute its semantic similarity
against all three ground truth models: M*, M~, and M*. Ideally, a model
generated from conflicting evidence (e.g., from D~ or L~) should exhibit high
similarity to its corresponding ground truth (M ~). Our central hypothesis is
that knowledge-driven hallucination will cause the generated model to show
significant similarity to the standard model (M) instead.

4 Results and Discussion

The results of our experiments are summarized?| in [Table 3| and [Table 4 For
each process model generated by an LLM, we report three semantic similarity
scores, comparing it against the standard (M), reversed (M ™), and shuffled
(M*) ground truth models. To facilitate analysis, we highlight the highest sim-
ilarity score for each generated model. The cell is colored green if the highest
score corresponds to the correct ground truth artifact (e.g., a model from D~ is
most similar to M ), indicating successful adherence to the provided evidence.
Conversely, the cell is colored red if the generated model is most similar to the
standard process model (M ™) despite being generated from conflicting evidence
(D—, D*, L™, or L*), signaling a clear instance of knowledge-driven hallucina-
tion. We omit this highlighting in cases where all similarity scores for a given
model are below 0.1, as a comparison at such a low level of quality is no longer
insightful.

To summarize overall performance, we report average scores in the columns
diag in [Table 3 and [Table 4] The first subcolumn in diag shows average scores

3 All artifacts and results are available at https://github.com/antonovi/
process-hallucinations.
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Table 3: Semantic similarity scores for models generated from textual descrip-
tions using standard and strict adherence prompts.

Standard Prompt T Strict Adherence Prompt
LLM Booking Gomplaint Audit diag Sales Order | Booking Complaint Audic Tiag
D A il Y Y A Y I Y YA Y PN Y A il Y YAVl I Y Y A Yl I Y Y Sl Y Al
037 0.06 0.06] 0.0 0.00 0.01] 0.17 0.05 0.05|0.20 0.10 0.00 0.00] 0.10 0.06 0.05[ 018 0.00 0.00] 0.12 0.07 0.02
command-r D~ 0.03 0.00 0.03]0.12 0.02 0.02| 0.00/0.90 0.06| 0.12 0.23 0.04|0.29| 0-18|| 0.10/ 0.16 0.05 0.12 0.02 0.02| 0.00 0.58 0.00| 0.12  0.23 0.04 017
D* 024 0.7 0.05| 0.04 0.00 0.06] 0.01_0.00 0.04| 0.04_0.03 0.05] 0.05 0.19_0.06_0.12[ 0.04_0.00_0.06| 0.05_0.05 0.33| 0.02_0.02 0.02

DT 0.40 0.08 0.04| 0.48 0.11 0.03 1.00 0.00 0.06] 0.53 0.26 0.02| 0.60 0.40 0.08 0.04 0.48 0.11 0.03| 0.62 0.00 0.11| 0.65 0.22 0.03

gemini-2.5-fash |p— [ 0.0910.60 0.04] 0.59 0.23 0.05] 0.00/1.00 0.06| 0.07 [0.17 0.01| 0.50| 0-45|| 0.09 0.60 0.04| 0.10 0.08 0.06| 0.00 '1.00 0.06| 0.14[0.20 0.01
D* | 0.05 0.05 0.33] 0.05 0.06 0.20 0.58 0.06 0.12| 0.07 0.04 0.21]|0.24 0.08 0.04 0.40| 0.03 0.06 0.35| 0.14 0.00 0.39| 0.05 0.03 0.23

DT 100 0.11 0.00| 0.52 0.13 0.04 1.00 0.00 0.06] 0.68 0.22 0.02[0.80 1.00 0.11 0.00 0.41 0.12 0.06[ 0.90 0.00 0.06| 0.77 0.23 0.02

gemini-2.5-pro  [D=  0.44 0.08 0.08| 0.38 0.13 0.05| 0.00 1,00/ 0.06| 0.19 0.12 0.01| 0.33| 0-41|| 0.08/0.40 0.04 0.15 0.10 0.08| 0.001.00 0.06| 0.14[0:17 0.01
D* 035 0.08 0.0 0.27 0.09 0.06_0.80 0.00 0.12| 0.08 0.06 0:17| 0.11 0.07_0.04 0.32] 0.09 0.09/0.16| 0.58 0.06 0.12| 0.04 0.04 0.30

DT "0.46 0.00 0.00] 0.01 0.00 0.01 0.69 0.00 0.05] 0.01 0.00 0.01]0.29 0.91 0.11 0.00 0.23 0.07 0.04| 0.08 0.00 0.00| 0.06 0.04 0.02
gpt-d.1mano  |p=[0.14 0.00 0.14]0.34 0.07 0.00| 0.000.78 0.06| 0.04 0.04 0.01]0.21|0-23|| 0.27 0.00 0.15 0.38 0.10 0.02| 0.00[0.50 0.06| 0.19/0.37 0.02
D* 0333 0.07_0.07| 0.05 0.050:25| 0.19 0.00 036 0.05 0.02 0.06| 0.18 033 0.00 0.07] 0.02 0.06/0:12| 036 0.00 0.25| 0.00_0.00 0.00

DT 1.00 0.11 0.00] 0.21 0.07 0.04 1.00 0.00 0.06] 0.42 0.21 0.00| 0.66 0.55 0.00 0.00 0.20 0.06 0.06| 1.00 0.00 0.06| 0.45 0.22 0.01

grok-3-fast D[ 0.1170.67 0.11| 0.66 0.15 0.02] 0.00 1.00 0.06| 0.17 0.38 0.03|0.55|0-50|| 0.09/0.60 0.04 0.38 0.08 0.00| 0.00 1.0 0.06] 0.150.28 0.03
5 )

0

0

T
0.47

]

0.00 0.12 0.50| 0.05 0.09 0.14 0.54 0.05 0.11] 0.05 0.03 0.45 0.30 .00 0.111.00] 0.04 0.09/0.23| 0.06_0.06_0.80| 0.06_0.03 0.38
DT 0.55 0.00 0.00[ 0.29 0.08 0.04 1.00 0.00 0.06] 0.08 0.05 0.04|0.48 .55 0.00 0.00 0.38 0.08 0.00[ 1.00 0.00 0.06] 049 0.17 0.02
grok-3-mini-fast | D~ | 0.11/1.00 0.11] 0.24 0.14 0.08| 0.00 1.00 0.06| 0.16 0.33 0.01| 0.62| 0-41 11 1.00 0.11 0.17 0.00 0.04| 0.00 1.00 0.06| 0.16 0.33 0.01

D* 0.55 0.00 0.00| 0.08 0.07/ 0.15 0.55 0.00 0.13| 0.02 0.03 0.30|0.14 0.05_0.10 0.83] 0.05 0.06/ 0.24] 0.00_0.06 0.70| 0.03 0.03 0.42

DT 044 008 0.00] 0.54 0.11 0.00 0.47 0.00 0.09| 0.38 0.15 0.020.46 1.00 0.11 0.00 0.54 0.11 0.00| 1.00 0.00 0.06| 0.47 0.23 0.02 5
kimi-k2 D"OQQ 0.62 0.11] 0.38 0.08 0.00| 0.00 0.90 0.06| 0.120.54 0.03|0.53[0-40|| 0.24 0,62 0.11 0.22 0.09 0.04| 0.000.14 0.05| 0.1/ 0.44 0.03 0.44
D* | 0.04_0.00 0.19] 0.05 0.05/0.21 0.27 0.03 0.06| 0.04 0.03 0.81] 0.19 0.05_0.050.33| 0.05_0.07/0.15 0.33 0.00_0.23] 0.04_0.01 0.26
DT 0,50 0.00 0.06] 0.34 0.09 0.03 0.90 0.00 0.06] 0.66 0.22 0.01]0.60 1.00 0.11 0.00 0.26 0.08 0.03]0.90 0.00 0.06[0.75 0.24 0.01
o3 D"n‘za 0.25 0.25 0.45 0.19 0.03] 0.00 1.00 0.06| 0.27 0.24 0.02| 0.42| 0:42|| 0.1 1.00 Un‘n\‘i 0.14 0.06] 0.00 1.00 0.06] 0.09 0.18 0.05 0.61
D* | 0.06_0.06/ 0.50| 0.07 0.05 0.14 0.58 0.06 0.12| 0.04 0.02 0.24] 0.25 0.05_0.10 0.83] 0.05_0.05 0.19| 0.00 _0.06 0.64| 0.03 0.02 0.44
DT 0.55 0.00 0.00] 0.1 0.09 0.03 0.90 0.00 0.06] 0.85 0.19 0.03| 0.53 1.00 0.11 0.00 0.41 0.12 0.04| 0.90 0.00 0.06| 0.54 0.26 0.02
od-mini D"OJ] 1.00 0.11] 0.66 0.15 0.03[ 0.00 1.00 0.06| 0.30 0.40 0.02[0.640.55|| 0.1 1.00 nn‘on 0.19 0.05| 0.00 1.00 0.06| 0.15 0.40 0.02 0.63
D* | 0.05 0.10 0.64] 0.05 0.06 0.26| 0.06 0.06 0.80| 0.03 0.03 0.28(/0.50 0.05 0.10 0.64| 0.05 0.06 0.26| 0.06 0.06 0.80| 0.03 0.04 0.44
DT "1.00 0.11 0.00[ 0.30 0.09 0.03 1.00 0.00 0.06] 0.64 0.24 0.01]0.73 0.50 0.00 0.06 0.52 0.13 0.04] 0.57 0.00 0.10] 0.25 0.16 0.03
awen3-235b-a22b Df‘ 0.2470.62 0.11] 0.66 0.15 0.02] 0.00/1.00 0.06| 0.26 0.23 0.03| 0.50| 0-45 | 0.1 7100 0.11 0.34 011 0.04| 0.00 100 0.06| 0.16/0.51 0.04 0.52
D* | 010 0.00 0.10| 0.13 0.04 0.03 0.73 0.06 0.06] 0.04 0.01 0.28] 0.11 0.00 0.06 0.46] 0.03 0.06/ 0.35| 0.20 0.00 0.64| 0.05 0.03 0.2 0.43

Table 4: Semantic similarity scores for models generated from event logs using
standard and strict adherence prompts.

Standard Prompt T Strict Adhorence Prompt
LLM Sales Order Booking Complaint Audit diag Sales Order Booking Complaint Audit diag

MF M- MT| MT M- | MT M- M| Mt M- arr AN[| MF M- MY MF M- A M - M| Mt a— e Al
0.04] 0.12 0.05 0.03| 0.80 0.00 0.06] 0.05 0.05 0.03| 0.3 0.60 009 0.04] 0.12 0.05 0.03] 0.80 0.00 0.06] 0.03 0.05 0.03] 059

command-r 0.08] 0.00 0,19 0.02| 0.00 0.00 0.00| 0.040.27 0.01|0.22|0-26| 0.060.36 0.12| 0.00 0.1 0.02| 0.00/0.62 0.05| 0.04/0.27 0.01|0.36|0.30
5 0.42| 0.04_0.04 0.11] 0.11_0.00/0.18[ 0.00_0.00_0.00] 0.15 0.05 0.05 0.33 0.04_0.03 0.11] 0.00 0.02 0.15] 0.0 0.00 0.00] 0.15
0.00[ 0.75 0.19 0.03[ 1.00 0.00 0.06] 0.68 0.18 0.05/0.86 100 0.11 0.00[ 0.62 0.15 0.02| 1.00 0.00 0.06] 0.67 0.18 0.0 0.52

gemini-2.5-flash | 2= | 1.00 0.1 0.00] 0.91 0.22 0.05] 0.20 0.28 0.06| 0.47 0.18 0.01]0.20 0-57|| 0.11[1.00 0.11] 0.91 0.22 0.05| 0.00 1.00 0.06| 0.62 0.20 0.02|0.61|0.70
L* | 0.00 0.10 0.69| 0.03 0.05 0.62| 0.06 0.06 1.00| 0.06 0.03 0.32| 0.66 0.00 0.11 1.00( 0.09 0.11 0.35| 0.06 0.06 1.00| 0.02 0.01 0.34]0.67
LF[1.00 0.11 0.00[ 0.75 0.19 0.03] 1.00 0.00 0.06| 0.68 0.18 0.05]0.86 100 0.11 0.00] 0.75 0.19 0.03] 1.00 0.00 0.06] 0.68 0.18 0.05]0.56

gemini-25-pro |1~ | 1.00 0.1 0.00 001 0.22 0.05| 1.00 0.00 0.06| 0.68 0.15 0.02|0.12|0-39| 1.00 0.1 0.00] 0.91 0.22 0.05| 0.00 1.00 0.06| 0.68 0.15 0.03|0.37|0.59
0.1111.00| 0.03 0.030:75| 0.06_0.06 1:00| 0.03_0.030:47|0.80 0.04_0.000:19] 0.02_0.030.60| 0.06_0.06 1.00| 0.06_0.07 0.41 0.55
0.10 0.00] 0.0 0.00 0.00] 0.62 0.00 0.05| 0.21 0.01 0.05] 0.42 1.00 011 0.00] 0.06 0.06 0.04| 0.82 0.00 0.05 0.04 0.00 0.01|0.48

gpt-4.1-nano 1.00 0.11] 0.09 0.07 0.05| 0.00/1.00 0.06| 0.00 0.18 0.04|0.57| 0-42| 0.00 0.5 0.06| 0.080.16 0.04| 0.00 0.00 0.00| 0.010.24 0.04|0.23|0.31
0.111.00] 0.06_0.05_0.08] 0.00 0.00 0.00| 0.05_0.04 0.05] 0.28 0.00 010 0.77| 0.03_0.03 0.09] 0.00_0.00 0.04| 0.0 0.00 0.01] 0.23
0.11 0.00| 0.75 0.19 0.03] 1.00 0.00 0.06| 0.68 0.18 0.05]0.86 100 0.1 0.00[ 0.75 0.19 0.03| 1.00 0.00 0.06] 0.68 0.18 0.05]0.56

grok-3-fast 0.11 0.00| 0.50 0.12 0.06| 0.200.20/ 0.06| 0.75 0.26 0.01] 0.19| 0.53|| 0.83 0.10 0.05| 0.50 0.12 0.06| 0.20 028 0.06| 0.15 0.07 0.03| 0.14| 049
0.111.00| 0.04_0.09 0.40] 0.04 0.00 0.41] 0.05 0.03 0.40 0.05 0.050.64| 0.05 0.10/ 0.42| 0.00 0.04 0.41| 0.05_0.03 0.42| 0.47
011 0.00[ 075 0.19 0.03[ 1.00 0.00 0.06] 0.68 0.18 0.05 047 009 0.04] 0.75 0.19 0.03[1.00 0.00 0.06[ 0.68 0.15 0.05]0.72

0.06 0.42 0.10| 0.19 0.75 0.05| 0.00 1.00 0.06| 0.15 0.51 0.01|0.67|0-71
0.00_0.11 1.00| 0.03_0.0310.63| 0.06_0.06 1.00| 0.06_0.04 0.81| 0.74
1.00 0,11 0.00| 0.36 0.08 0.02] 1.00 0.00 0.06| 0.13™ 0.05 0.04] 0.62
0.03 0.03 0.03] 0.20 0.07 0.02| 0.20 0.29 0.06| 0.33 0.17 0.01|0.14| 0.46
10/ 0.36] 0.06 0.061.00| 0.06_0.04  0.28 0.00 0.1 1.00] 0.11 0.07/0.43| 0.06 0.06 1.00| 0.04 0.03 0.09|0.63
19 0.03[ 1.00 0.00 0.06] 0.68 0.18 0.05]0.86 1.00 0.11 0.00] 0.88 0.18 0.03| 1.00 0.00 0.06] 0.68 0.18 0.05|0.88
22 0.05[ 0.00 1.00 0.06( 0.52 0.13 0.02| 0.37|0-65/| 0.10/ 0.83 0.10| 0.220.91 0.05| 0.00  1.00 0.06| 0.10/ 0.41 0.01|0.79 |0-82

grok-3-mini-fast | L= | 0.11 1.00 0.11] 0.75
L* | 0.04_0.14 0:67| 0.08
LT | 1.00 011 0.00] 0.62
kimi-k2 L~ | 1.00 0.11 0.00| 0.62
L* [ 0.00 0.111.00] 0.10
LT[100 011 0.00[ 0.75
o3 L~ [ 1.00 011 0.00| 0.91

°

19 0.05| 0.00/ 1.00 0.06| 0.15 0.51 0.01
08 0.45| 0.06_0.06 1.00| 0.11_0.07 0.20
15 0.02| 0.0 0.00 0.06] 0.65 0.18 0.05
15 0.02[ 0.00 0.00 0.00| 0.48 0.15 0.04

coo

°

L= [ 0.00 0.111.00] 0.04 0.06/0.87| 0.06 0.061.00| 0.03 0.01 0.49] 0.71 0.00 0.1 1.00] 0.03 0.05/0.59] 0.06 0.06 1.00| 0.02_0.01 0.52|0.78
LT[ 100 0.11 0.00] 0.75 0.19 0.03[ 0.70 0.00 0.06[ 0.68 0.18 0.05]0.78 1.00 0.11 0.00[ 076 0.19 0.03] 1.00 0.00 0.06] 0.68 0.18 0.05|0.86

©o4-mini L~| 011 1.00 0.11| 0.50 0.12 0.06| 0.00 1.00 0.06| 0.07 0.38 0.01|0.63|0-69|| 0.10 0.83 0.10| 0.15 0.62 0.05| 0.00 1.00 0.06| 0.15 0.51 0.01|0.740.78
L* | 0.00 0.11 1.00| 0.00 0.05/0.42| 0.06 0.061.00| 0.04 0.03 0.28| 0.68 0.00_0.11 1.00| 0.03 0.03/0.71| 0.06 0.06 1.00| 0.08 0.06 0.81| 0.75
LT [1.00 011 0.00[ 0.75 0.19 0.03] 1.00 0.00 0.06] 0.65 0.18 0.05] 0.85 1.00 0.11 0.00[ 0.71 0.18 0.03[ 1.00 0.00 0.06[ 0.68 0.18 0.05| 0.85

5b- b1 = | 0.04 0.16 0.04| 0.58 0.16 0.02| 1.00 0.00 0.06| 0.23 0.26 0.01|0.15|0-50| 0.10 0.83 0.10| 0.19 0.60 0.09| 0.00 1.00 0.06| 0.15 0.51 0.01|0.73|0.72
L* | 0.00 0.07 0.45] 0.09 0.11/0.14] 0.06 0.06/1.00| 0.06 0.02 0.40| 0.50 0.00 0.07 0.45| 0.04 0.07/0.46| 0.06 0.06 1.00| 0.03 0.02 0.36] 0.57

for matching pairs: (M+ vs. DY /L*), (M~ vs. D= /L™), and (M* vs. D*/L*).
The second subcolumn in diag reports the mean of these three scores, offering
a single, aggregated measure of adherence quality for each LLM. In we
additionally report the score differences between the best performing LLM and
each LLM’s average diagonal score.

Our findings strongly support our central hypothesis: LLMs exhibit a sig-
nificant tendency for knowledge-driven hallucination when faced with atypical
process structures. This is evident from two key observations. First, we identi-
fied numerous instances where models generated from reversed or shuffled arti-
facts were substantially more similar to the standard ground truth model (M™)
than to their own source evidence. As the red cells in the tables show, this
phenomenon occurred across all tested LLMs, with no model achieving full ad-
herence to atypical evidence. Second, even in cases where the LLM correctly
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Table 5: Gap to best average diagonal score (diag) for each configuration. Values
show the difference between the best performing LLM and each LLM’s average
diagonal score.

LLM Textual Description Log Abstraction
Standard Prompt|Strict Prompt|Standard Prompt |Strict Prompt
command-r 0.37 0.46 0.44 0.52
gemini-2.5-flash 0.11 0.18 0.13 0.12
gemini-2.5-pro 0.14 0.16 0.11 0.22
gpt-4.1-nano 0.32 0.41 0.28 0.50
grok-3-fast 0.05 0.08 0.17 0.32
grok-3-mini-fast 0.14 0.05 0.00 0.11
kimi-k2 0.16 0.19 0.19 0.35
03 0.13 0.02 0.06 0.00
o4-mini 0.00 0.00 0.01 0.03
qwen3-235b-a22b 0.10 0.12 0.21 0.10

followed the atypical process structure (green cells for D~, D*, L~, L*), the
quality of the generated model, as measured by the similarity score, was gener-
ally lower than that achieved for the standard process (D, L™). For example,
while gpt-4.1-nano with the strict prompt achieved a perfect score (1.00) for the
sales order process from LT, the discovered models for the atypical artifacts (L~
and L*) received lower scores (0.55 and 0.77, respectively). This suggests that
even when LLMs do not fully hallucinate, their performance is degraded when
the input contradicts their internal knowledge, as they struggle to reconcile the
evidence with their pre-trained schemas.

4.1 The Influence of Experimental Inputs and Prompts

Effect of Strict Prompting: Our experiment shows that explicitly instructing the
LLM to adhere strictly to the provided input can mitigate, but not eliminate,
this issue. While all models were susceptible, their responsiveness to the strict
prompt varied. For instance, 08 showed a marked improvement with the strict
prompt, correctly modeling several atypical processes it had previously failed
on. In contrast, other models like grok-3-fast continued to hallucinate frequently
even under strict instructions. With standard prompts, we observed 27 clear
cases of hallucination from textual descriptions and 20 from event logs. The strict
adherence prompt reduced these numbers to 13 and 10, respectively. While this
improvement confirms that prompt engineering is a helpful mitigation strategy,
its inability to fully resolve the problem underscores how deeply ingrained the
model’s background knowledge is.

Effect of Artifact Type: The type of input artifact also appears to play a role.
We observed fewer hallucinations when models were generated from event logs
compared to textual descriptions (a total of 30 instances for logs vs. 40 for text
across both prompt types). This is logical, as the structured and unambiguous
format of an event log may serve as stronger evidence for the LLM compared
to the inherent ambiguity of natural language. However, the persistence of the
issue in log-based generation confirms that even structured data is not immune
to being overridden by the model’s internal schemas.
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4.2 Analysis of LLM-Specific Characteristics

Impact of Model Properties: Our analysis reveals that knowledge-driven hallu-
cination is a general weakness across different LLMs, though its severity varies.
Interestingly, we found no direct relationship between an LLM’s size (param-
eter count) and its ability to adhere to atypical evidence. For instance, the
massive 2.7T-parameter grok-3-fast and the compact 18B-parameter gpt-4.1-
nano showed comparable weaknesses, while the mid-sized o4-mini was a top
performer. Similarly, while reasoning capabilities are often associated with bet-
ter performance, they do not guarantee immunity to this type of hallucination.
Both gemini-2.5-pro and o04-mini are considered reasoning models, yet 04-mini
demonstrated significantly better adherence to atypical evidence. This suggests
that neither raw scale nor general reasoning ability alone predicts a model’s
fidelity to source evidence when it conflicts with pre-trained knowledge.

Correlation Between General Capability and Knowledge Hallucination: A
particularly revealing finding is that high performance on standard tasks does
not guarantee robustness against knowledge hallucination. A prime example is
gemini-2.5-pro, which shows strong performance on a wide range of tasks (as
measured by the LiveBench benchmark). It was also the top-performing model
in our experiment when using the standard prompt and the textual descriptions
(D), achieving the highest average score (0.80). However, its performance col-
lapsed when faced with conflicting artifacts, dropping to 0.33 for the reversed
descriptions (D~) and just 0.11 for the shuffled ones (D*). This dramatic drop
suggests that the model’s well-formed internal schema for the standard process
is so dominant that it consistently overrides conflicting source evidence, making
it highly prone to knowledge-driven hallucination.

5 Conclusion

This paper introduced and empirically investigated the phenomenon of knowledge-
driven hallucination in Large Language Models (LLMs), where a model’s pre-
trained knowledge overrides explicit source evidence, leading to factually in-
correct but plausible-looking outputs. Through a controlled experiment in the
domain of automated process modeling, we systematically evaluated the fidelity
of ten state-of-the-art LLMs when tasked with generating process models from
standard and deliberately atypical process evidence.

Our findings demonstrate that LLMs exhibit a tendency to prioritize their
generalized internal schemas over contradictory evidence provided in the prompt.
This was evident as models frequently reverted to generating a standard process
flow even when the input described a reversed or structurally shuffled version.
We observed this behavior across all tested LLMs, regardless of their size or
specialization, and with both unstructured text and structured event log inputs.
Even in cases where the models did not fully hallucinate, their performance in
correctly modeling atypical processes was significantly degraded compared to
standard ones, highlighting the disruptive effect of the conflict between evidence
and internal knowledge.
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The implications of our findings extend far beyond process modeling and raise
critical concerns about the reliability of LLMs in any evidence-based domain.
The danger of knowledge-driven hallucination lies in its deceptive nature; the
generated artifacts are often coherent, logical, and well-formed, masking the
fact that they do not accurately represent the source data. This “plausibility
trap” poses a significant risk in fields such as legal analysis, financial reporting,
and scientific research, where strict adherence to source evidence is essential.
Our work underscores that simple prompt engineering, such as instructing the
model to be faithful to the input, can mitigate but not eliminate this deep-seated
behavior.

Future work should focus on two key areas. First, there is a clear need to de-
velop more robust mitigation techniques beyond prompting that allow for better
control over the influence of pre-trained knowledge. Second, this experimental
methodology could be adapted to investigate knowledge-driven hallucination in
other structured generation tasks, such as code generation from legacy speci-
fications or data schema creation from business requirements. Ultimately, our
study serves as a critical reminder that as we delegate more complex analytical
tasks to Al, we must also develop rigorous methods to validate its outputs and
ensure that its powerful inferential capabilities do not come at the cost of factual
integrity.

Acknowledgment The project on which this work is based upon was funded
by the German Federal Ministry of Research, Technology and Space Travel
(grant 01IS23065). The responsibility for the content of this publication lies
with the authors.
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