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Abstract. Modern organizations manage complex processes involving
multiple object types, event types, and dynamic attributes, such as stock
levels, patient vital signs, or machine status, which define critical ob-
ject states (e.g., Understock, Patient at Risk, Machine Down). While
object-centric process mining (OCPM) with OCEL 2.0 captures these
attributes, it does not systematically model state transitions, limiting
insights into process dynamics. We propose State-Aware Object-Centric
Process Mining (SA-OCPM), an extension of OCEL 2.0 that introduces
(1) object state transition events to log changes (e.g., Normal to Un-
derstock, Patient at Risk to Stable, Machine Down to Running) and (2)
object state-aware events to refine events with state context (e.g., Goods
Receipt (Understock), Patient Admission (Patient at Risk), Maintenance
Start (Machine Down)). Implemented in a commercial platform, SA-
OCPM enables precise analysis of when, why, and how processes deviate
from the optimum, as demonstrated in a logistics case study revealing in-
efficiencies like prolonged understock. SA-OCPM’s state-based approach
enhances diagnostic granularity and is applicable to domains like health-
care, manufacturing, and customer relationship management.

Keywords: State-Aware Object-Centric Process Mining · OCEL 2.0 ·
Process Mining · Inventory Management

1 Introduction

Modern organizations manage complex processes involving object types (e.g.,
materials, patients, machines), event types (e.g., goods receipt, patient admis-
sion, maintenance start), and dynamic attributes (e.g., stock levels, vital signs,
machine status) that define critical object states like Understock, At Risk, or
Down. These states impact outcomes, e.g., a material shifting to Understock
causes order delays, a patient to Critical needs urgent care, a machine to Idle
signals inefficiencies, and a client to Churned risks revenue loss. Understand-
ing when, why, and how these transitions occur is key to process optimization.
Object-centric process mining (OCPM), based on OCEL 2.0 [2], models object
types, event types, and their interactions and attributes, surpassing case-centric
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methods. Yet, OCEL 2.0 captures attributes (e.g., stock levels, risk scores) with-
out systematically modeling object states or transitions, limiting detection of
changes like low stock and links to inefficiencies, thus impeding root cause anal-
ysis and insights.

To address this gap, we propose State-Aware Object-Centric Process Mining
(SA-OCPM), a structured extension of OCEL 2.0 that explicitly incorporates
object states and their transitions. SA-OCPM enhances OCPM by introducing:
(1) object state transition events, which mark changes like a material shifting
from Normal to Understock, and (2) object state-aware events, which refine ex-
isting events with state context, such as relabeling Goods Receipt as Goods Re-
ceipt (Understock). These extensions enable precise tracking of state dynamics,
revealing the catalysts and consequences of critical transitions. SA-OCPM is
particularly suited for objects with measurable, dynamic attributes that form
discrete state sets, such as materials (with stock-based states), patients (with
health-based states), or machines (with operational states).

Problem Statement. Existing OCPM approaches, despite modeling objects,
events, and attributes, do not explicitly capture object states or their transitions,
limiting the ability to analyze how state changes drive process behavior. This
gap obscures critical insights, such as why a material enters an Understock state
or how a patient becomes At Risk, impeding targeted interventions.

Research Questions. This study addresses the following questions to advance
state-aware process analysis:

RQ1: State Modeling: How can object states be defined and integrated into
OCEL 2.0 to enable precise tracking of state transitions in object-centric
process mining?

RQ2: Transition Analysis: How can state transitions be detected, represented,
and analyzed to uncover when, why, and how processes deviate from
desirable states?

RQ3: Practical Impact: How does SA-OCPM, applied to domains like inventory
management, demonstrate effectiveness and generalizability in identify-
ing and addressing inefficiencies?

Contributions. We introduce SA-OCPM, extending OCEL 2.0 by defining ob-
ject states (e.g., Normal, Understock) from dynamic attributes using domain-
specific models like Min-Max inventory rules, generating object state transition
events to log state changes (e.g., ST CHANGE Normal to Understock), and
refining events into object state-aware events (e.g., Goods Issue (Understock))
to embed state context. Formalized in Definitions 2 and 3 and implemented in
Celonis, SA-OCPM reveals inefficiencies like prolonged Understock in a logis-
tics case study, generalizing to domains like healthcare and manufacturing for
enhanced process intelligence.

The paper is organized as follows: Section 2 reviews related work. Section 3
details SA-OCPM’s framework and formalization. Section 4 presents the imple-
mentation. Section 5 presents the case study and results. Section 6 concludes
with future research directions.
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2 Related Work

In this section, we review literature relevant to our proposed State-Aware Object-
Centric Process Mining (SA-OCPM), focusing on its advancements in modeling
and analyzing object state transitions within object-centric process mining.

Object-Centric Process Mining: OCPM extends traditional case-centric ap-
proaches [1] by modeling multiple object types and their interactions [2]. Tech-
niques include artifact-centric models [18], object-centric behavioral constraint
models [17], and object-centric DFGs/Petri nets [3, 6]. Commercial tools like
Celonis Process Sphere leverage OCPM for complex process analysis [2]. While
OCEL 2.0 captures dynamic attributes (e.g., stock levels), it lacks explicit mech-
anisms to model state transitions, limiting insights into process dynamics driven
by state changes. SA-OCPM addresses this by introducing state transition events
and state-aware events, enabling precise tracking of when, why, and how state
changes impact processes.

Data-Driven Process Analysis and State-Based Modeling: Data-aware
process mining integrates contextual attributes to analyze process behavior.
Methods include decision rule discovery [10], multi-perspective process mod-
els [20], and simulation-based approaches [19]. State-based models, such as finite
state machines [13] and interactive discovery [11], capture dynamic conditions in
domains like healthcare [32] and manufacturing [9]. However, these approaches
often focus on case-centric states or lack systematic integration of state transi-
tions within object-centric frameworks. SA-OCPM extends OCEL 2.0 by defin-
ing states via domain-specific models (e.g., Min-Max inventory rules) and embed-
ding state transition events, enhancing causality analysis across multiple object
types.

Inventory Management and Logistics in Process Mining: Process mining
has been applied to optimize inventory and logistics [1, 25]. Early case-centric
approaches [12, 29] evolved into OCPM to handle multiple object types [2, 23],
as seen in case studies [7,16]. However, OCPM models can become complex due
to numerous elements, and prior work [14] introduced activity transformations
that complicated analysis. The segmentation framework by [15] addresses this
by decomposing object-centric event logs into focused segments based on ob-
ject relationships, event types, and temporal intervals, simplifying analysis and
revealing localized patterns like understock and overstock issues in inventory
management. SA-OCPM builds on this by incorporating state-aware events and
transition events, enabling focused analysis of state-driven inefficiencies, such as
prolonged Understock states, in domains like inventory management. Unlike seg-
mentation, which isolates process fragments, SA-OCPM embeds state dynamics
directly into the event log, enhancing granularity in tracking when, why, and how
state changes impact logistics processes.

Root Cause Analysis and Performance Insights: Root cause analysis in
process mining links outcomes to underlying causes using causal modeling [24],
machine learning [22], graphical models [30], and domain knowledge [5,25]. These
methods are based on models which do not explicitly consider state transitions,
limiting their ability to capture dynamic data interactions across objects. SA-
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OCPM integrates state transitions directly into the event log, enabling precise
identification of catalysts (e.g., supplier delays causing Understock) and their
process impacts, offering a more granular and actionable approach to root cause
analysis.

3 State-Aware Object-Centric Process Mining
(SA-OCPM)

We propose State-Aware Object-Centric Process Mining (SA-OCPM), a struc-
tured extension of the OCEL 2.0 standard to explicitly incorporate object states
and their transitions. Unlike traditional OCPM [2], which models objects, events,
and their interactions but does not systematically exploit state dynamics, SA-
OCPM enhances OCEL 2.0 by introducing (1) object state transition events to
mark changes in object states (e.g., from Normal to Understock) and (2) ob-
ject state-aware events to refine existing events with state-specific labels (e.g.,
Goods Receipt (Understock)). This approach, formalized in Definitions 2 and 3,
enables precise analysis of when, why, and how processes evolve due to state

(a) Non-Enriched Object-Centric Event Log
Ev.ID Mat. POi Activity Supplier Speed Stock Timestamp

E01 M001 PO001 Create Purchase
Order Item

Supplier A Low 75 2025-01-01 09:00

E02 M001 – Goods Issue – – 65 2025-01-02 10:00

E03 M001 – Goods Issue – – 55 2025-01-03 11:00

E04 M001 – Goods Issue – – 45 2025-01-04 12:00

E05 M001 PO001 Goods Receipt Supplier A Low 165 2025-01-10 14:00

(b) State-Aware Object-Centric Event Log
Ev.ID Mat. POi Activity Supplier Speed State Stock Timestamp

E01 M001 PO001 Create Purchase
Order Item (Nor-
mal)

Supplier A Low Normal 75 2025-01-01 09:00

E02 M001 – Goods Issue
(Normal)

– – Normal 65 2025-01-02 10:00

E03 M001 – Goods Issue
(Normal)

– – Normal 55 2025-01-03 11:00

E06 M001 – ST CHANGE
Normal to Un-
derstock

– – Understock 45 2025-01-04 12:00

E04 M001 – Goods Issue (Un-
derstock)

– – Understock 45 2025-01-04 12:00

E07 M001 PO001 ST CHANGE
Understock to
Overstock

Supplier A Low Overstock 165 2025-01-10 14:00

E05 M001 PO001 Goods Receipt
(Overstock)

Supplier A Low Overstock 165 2025-01-10 14:00

Normal State

Understock State

Overstock State

 

Create PO Item
(Normal)

2025-01-01
09:00

M001

 

 

PO001

 

ST CHANGE
Normal to

Understock
2025-01-04

12:00

Goods Issue
(Understock)
2025-01-04

12:00

M001

ST CHANGE
Understock to

Overstock
2025-01-10

14:00

Goods Receipt
(Overstock)
2025-01-10

14:00

M001,PO001

Goods Issue
(Normal)

2025-01-02
10:00

M001

Goods Issue
(Normal)

2025-01-03
11:00

M001

M001

M001,PO001

M001 PO001

Fig. 1: Comparison of non-enriched (Table 1a) and state-aware (Table 1b)
object-centric event logs for inventory management (material with normal stock:
50–150), alongside a visualization of the enriched log (right). The state-aware
event log incorporates state data and transition events, detailing how Under-
stock resulted from delayed replenishment and Overstock from excessive order
size, why (e.g., Supplier A’s delays or low delivery speed), and when transitions
occurred with precise timestamps.
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changes, addressing the limitations of OCPM in capturing dynamic data-driven
conditions.
Conceptual Framework: SA-OCPM extends OCEL 2.0, which already mod-
els objects, events, and attributes (including data attributes like stock levels or
risk scores) as per Definition 1 [2]. While OCEL 2.0 supports dynamic data at-
tributes via the πovmap function, these are typically used for static or descriptive
purposes rather than dynamic state modeling. SA-OCPM introduces a system-
atic approach to define and track object states, derived from domain-specific
data attributes, and integrates them into the event log. This is achieved through
two key mechanisms:

1) Object State Transition Events: New events are generated to explicitly record
when an object’s state changes, as defined in Definition 2. For example,
a material transitioning from Normal to Understock due to a stock level
dropping below a safety threshold triggers a state change event (e.g., ST
CHANGE Normal to Understock). These events, timestamped at t−ϵ, link to
the affected object and capture the old and new states, enabling traceability
of state dynamics.

2) Object State-Aware Events: Existing events are refined by appending the
object’s state at the time of occurrence, as specified in Definition 2. For in-
stance, a Goods Receipt event executed when a material is in an Understock
state is relabeled as Goods Receipt (Understock). This preserves the origi-
nal event identity while embedding state context, facilitating state-specific
process analysis.

Definition 1 (Object-Centric Event Log (OCEL)). Let Uσ denote the uni-
verse of all strings. An object-centric event log (OCEL) is a tuple (E,O,A,
OT, πact, πtime, πot, πomap, πvmap, πovmap,≤), where E is a finite set of unique
events, O is a finite set of unique objects, A is a finite set of activities, OT
is a finite set of object types, πact : E → A assigns each event to an ac-
tivity, πtime : E → R assigns each event a timestamp, πot : O → OT as-
signs each object to an object type, πomap : E → P(O) assigns each event to
a set of related objects, πvmap : E × Uσ ↛ Uσ ∪ R assigns values to event-
attribute pairs, πovmap : O × Uσ × R ↛ Uσ ∪ R assigns values to object-
attribute-timestamp triples, and ≤ ⊆ E×E is a total order on events defined by
e1 ≤ e2 ⇐⇒ πtime(e1) ≤ πtime(e2), with tie-breaking for equal timestamps.

An OCEL, as in Def. 1, structures process execution data involving multiple
interacting entities, with events (E) as process occurrences (e.g., “Order Cre-
ated”), objects (O) as involved entities (e.g., orders, products), activities (A) as
event types linked by πact (e.g., “Create Order”), and object types (OT ) catego-
rizing objects via πot (e.g., “Order”). The function πtime assigns timestamps to
events, πomap links events to related object sets (e.g., “Ship Package” to order
“o1” and package “p1”), πvmap assigns attribute values to event-attribute pairs
(e.g., “Channel” as “Online”), πovmap assigns time-varying attribute values to
object-attribute-timestamp triples (e.g., “StockLevel” for “Product X” at time
t1), and ≤ orders events temporally by timestamps.
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Definition 2 (State-Aware OCEL). Given an OCEL OCELbase = (E,O,
A,OT, πact, πtime, πot, πomap, πvmap, πovmap,≤base) and a specific object attribute
name ā ∈ Uσ such that for all o ∈ O and for all t ∈ R, (o, ā, t) ∈ dom(πovmap)
and πovmap(o, ā, t) ∈ Uσ (This means the attribute ā is always defined for every
object o at every time t, and its value is always a string representing the state
of o at t). A state-aware object-centric event log is a tuple OCELstate = (E′, O,
A,OT, π′

act, π
′
time, πot, π

′
omap, π

′
vmap, πovmap,≤′) where:

– E′ = E ∪ E′′ is the extended set of events.
– E′′ = {e(o,t) | o ∈ O, t ∈ R such that πovmap(o, ā, t) ̸= πovmap(o, ā, t−ϵ)} is a

set of newly generated state change events. Here, ϵ is an small positive real
number representing the time duration just before t. (The condition ensures
that πovmap(o, ā, t) and πovmap(o, ā, t − ϵ) are both defined due to the global
assumption on ā).

– The sets O,A,OT, and the function πot are inherited from OCELbase. The
function πovmap is also inherited and primarily used for determining states
and attribute values.

– π′
act : E

′ → A ∪ Uσ is the activity assignment function, defined as:

• π′
act(e) = πact(e)⊕ “( ”⊕ πovmap(o, ā, t)⊕ “)” for e ∈ E.

• π′
act(e(o,t)) = “STCHANGE ”⊕πovmap(o, ā, t−ϵ)⊕“ to ”⊕πovmap(o, ā, t)

for e(o,t) ∈ E′′, where ⊕ denotes string concatenation.

– π′
time : E

′ → R is the timestamp assignment function, defined as:

• π′
time(e) = πtime(e) for e ∈ E.

• π′
time(e(o,t)) = t− ϵ for e(o,t) ∈ E′′.

– π′
omap : E′ → P(O) is the object mapping function, defined as:

• π′
omap(e) = πomap(e) for e ∈ E.

• π′
omap(e(o,t)) = {o} for e(o,t) ∈ E′′.

– π′
vmap : E′ ×Uσ ↛ Uσ ∪R is the event attribute value assignment function,

defined as:

• π′
vmap(e, attr) = πvmap(e, attr) for e ∈ E and (e, attr) ∈ dom(πvmap).

• π′
vmap(e(o,t), attr) = πovmap(o, attr, t−ϵ) for e(o,t) ∈ E′′ and (o, attr, t) ∈

dom(πovmap). (If attr = ā, this gives the new state, which is guaranteed
to be defined).

– ≤′ ⊆ E′ × E′ is a total order on the extended set of events, defined as
e1 ≤′ e2 ⇐⇒ π′

time(e1) ≤ π′
time(e2), with a suitable tie-breaking mechanism

if needed.

A State-Aware OCEL, as in Definition 2, extends a standard OCEL by in-
corporating a state attribute ā (e.g., “Stock Status”), always defined for every
object at all times t ∈ R, with string values representing object states. It in-
cludes original events E and new state change events E′′ = {e(o,t) | o ∈ O, t ∈
R, πovmap(o, ā, t) ̸= πovmap(o, ā, t−ϵ)}, where ϵ is an small positive duration. For
original events, π′

act(e) = πact(e) ⊕ “( ” ⊕ πovmap(o, ā, t) ⊕ “)”, while for state
change events e(o,t) ∈ E′′, π′

act(e(o,t)) = “STCHANGE ” ⊕ πovmap(o, ā, t − ϵ) ⊕
“ to ”⊕ πovmap(o, ā, t). Original events retain their timestamps via π′

time, while
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state change events are timestamped at t− ϵ. The function π′
omap preserves orig-

inal event-object mappings and assigns {o} to state change events e(o,t). Event
attributes via π′

vmap and temporal order ≤′ are updated accordingly, making
state changes explicit events to facilitate analysis of state transitions and their
impact.

Definition 3 (Coalesced State-Aware OCEL). A Coalesced State-Aware
OCEL, denoted OCELcoal, is derived from a State-Aware OCEL OCELstate =
(E′, O,A,OT, π′

act, π
′
time, πot, π

′
omap, π

′
vmap, πovmap,≤′) (where E′ = E∪E′′, and

E′′ is the set of individual state change events) by applying a coalescing transfor-
mation. The OCELcoal shares the core components O,A,OT, πot, and πovmap

with OCELstate. The transformation primarily affects the event set and its re-
lated mappings as follows:

– Event Coalescing:

• Original process events E ⊆ E′ from OCELstate are preserved.
• All individual state change events e′′ ∈ E′′ that share an identical times-
tamp t∗ = π′

time(e
′′) and an identical activity label π′

act(e
′′) are grouped.

Each such group is replaced by a single new coalesced state change event,

e
(t∗,a)
c , where a = π′

act(e
′′) is the common activity label of the grouped

events.
• The resulting event set is Ecoal = E ∪E′′

coal, where E′′
coal is the set of all

such unique coalesced state change events.

– Properties of New Coalesced Events (e
(t∗,a)
c ∈ E′′

coal) in OCELcoal:

• Timestamp: The event e
(t∗,a)
c is assigned the timestamp t∗.

• Related Objects: It is related to the union of all objects that were related

to the individual e′′ events merged at t∗ with activity a, i.e., π′′
omap(e

(t∗,a)
c ) =⋃

{π′
omap(e

′′) | e′′ ∈ E′′, π′
time(e

′′) = t∗, π′
act(e

′′) = a}.
• Activity: It is assigned the common activity label a, i.e., π′′

act(e
(t∗,a)
c ) = a.

• Attributes: Its attributes can be defined to summarize the merged changes
(e.g., a count of affected objects, a list of the specific state transitions
involved) or may be sparsely defined/omitted if detailed attribute infor-
mation for these coalesced events is not critical.

– Mappings for Original Events: For events e ∈ E, all their mappings (activity,
time, related objects, attributes) remain unchanged from OCELstate.

– Overall Structure: The new functions π′′
act, π

′′
time, π

′′
omap, π

′′
vmap and the tem-

poral order ≤′′ for OCELcoal reflect these changes.

To manage complexity in logs with frequent state changes, SA-OCPM in-
cludes a coalescing transformation (Definition 3), which groups simultaneous
state change events into single coalesced events. This simplifies analysis by high-
lighting collective state transitions across multiple objects, as illustrated in Fig-
ure 1, where state transitions (e.g., Normal to Understock) are visualized along-
side state-aware events.
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Defining Object States: Object states are encoded as an OCEL attribute
ā ∈ Uσ, always defined for every object at all times (Definition 2). States (e.g.,
Normal, Understock, Overstock) are derived during ETL or computed using
mathematical models (e.g., optimization or decision rules) based on attribute
values. Suitable object types have dynamic, measurable attributes impacting
process behavior. Examples include:

– Materials (Inventory): States like Understock, Normal, Overstock from stock
levels via Min-Max model [28].

– Patients (Healthcare): States like Stable, At Risk, Critical from clinical met-
rics (e.g., vital signs).

– Machines (Manufacturing): States like Running, Idle, Down from opera-
tional metrics (e.g., uptime).

– Customers (CRM): States like Active, At Risk, Churned from engagement
metrics (e.g., purchase frequency).

Objects like orders may aggregate states from related objects (e.g., mate-
rials). SA-OCPM focuses on objects with discrete state sets derived from at-
tributes like stock levels or risk scores, ensuring broad applicability.

4 Implementation

This section outlines the implementation of State-Aware Object-Centric Process
Mining (SA-OCPM) within the Celonis Execution Management System (EMS)
to enrich object-centric event logs with state information for granular process
analysis.

SA-OCPM implementation begins with loading source data, such as inven-
tory tables from enterprise systems or simulated datasets (e.g., Zenodo artifacts).

Fig. 2: Celonis Dashboard highlighting context-specific metrics (stock structures,
material details) and a state-aware object-centric process model.
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Object types (e.g., materials (MAT ), purchase orders (PO ITEM )) and event
types are defined in the Celonis Object-Centric Data Model, including their
relationships.

State-related information is materialized through custom transformations:

– Attribute Computation: Scripts compute dynamic attributes like Economic
Order Quantity (EOQ) and Safety Stock (SS) for state definitions, e.g., for
material-plant combinations in inventory management.

– State Transition Events: SQL scripts detect state changes (e.g., Normal to
Understock) based on attributes, generating object state transition events
(e.g., ST CHANGE Normal to Understock).

– State-Aware Events: Transformations postfix activity names with the ob-
ject’s state (e.g., Goods Receipt to Goods Receipt (Understock)) using query
languages like PQL.

These transformations, orchestrated via Celonis Data Jobs, update the pro-
cess intelligence graph. The enriched event log supports advanced analysis, in-
cluding state-aware process visualization (e.g., via Multi-Perspective Process
Explorer), conformance monitoring (e.g., Min-Max policies), and automated ac-
tions (e.g., Action Flows for understock replenishment).

Scripts for state transitions and state-aware events, including SQL and PQL
snippets, are available in an OSF dataset (https://osf.io/7wm2y/?view_only=
dd7ca32c15cf4b80884afce82d37357e). A simulated OCEL and source data are
provided on Zenodo (https://doi.org/10.5281/zenodo.15535073).

5 Case Study

To evaluate the practical impact of State-Aware Object-Centric Process Mining
(SA-OCPM), we applied it to an inventory management scenario at a leading
European pet retailer, with 2024 revenues of approximately 4.8 billion e. Con-
ducted in collaboration with the retailer, this study targets inefficiencies tied
to object states like Understock and Overstock across omnichannel operations,
which lead to significant financial losses. Leveraging SA-OCPM, we extend prior
work [14] by integrating object state transition events and object state-aware
events to analyze state-driven process dynamics, capturing when, why, and how
inefficiencies emerge.

5.1 Mathematical Models for Inventory States

To systematically analyze inventory dynamics within SA-OCPM, we define ob-
ject states, i.e., Understock, Normal, and Overstock, derived from dynamic at-
tributes using the Min-Max method [4,27]. These states, computed from object-
centric event data as outlined in Section 3, enable precise tracking of state tran-
sitions, revealing the catalysts and consequences of inefficiencies. Maintaining
Normal state balances availability and cost, while Overstock increases holding
costs and Understock risks lost sales [8, 21,31].

The Min-Max method uses four key metrics for each material m:

https://osf.io/7wm2y/?view_only=dd7ca32c15cf4b80884afce82d37357e
https://osf.io/7wm2y/?view_only=dd7ca32c15cf4b80884afce82d37357e
https://doi.org/10.5281/zenodo.15535073
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– Economic Order Quantity (EOQ): Minimizes ordering and holding costs,

calculated as EOQm =
√

2DmS
H , where Dm is annual demand, S is fixed

cost per order, and H is holding cost per unit [26].
– Safety Stock (SS): Buffers demand and lead time variability, given by SSm =

z × σm ×
√
lm, where z is the service level factor, σm is demand standard

deviation, and lm is lead time [33].
– Reorder Point (ROP): Triggers replenishment, defined as ROPm = dm ×

lm + SSm, with dm as average demand [27].
– Maximum Stock Level (Max): Limits excess inventory, computed as Maxm =

EOQm + SSm [27].

Using these, we define the state for material m at time t:

– Understock : Inventory Levelm,t < SSm, signaling insufficient stock.
– Normal : SSm ≤ Inventory Levelm,t ≤ Maxm, reflecting optimal levels.
– Overstock : Inventory Levelm,t > Maxm, indicating excess.

These states, encoded as attribute ā in the State-Aware OCEL (Definition 2),
enable object state transition events (e.g., ST CHANGE Normal to Understock)
and object state-aware events (e.g., Goods Receipt (Understock)), linking state
changes to process behavior for root cause analysis.

5.2 Object-Centric Event Log

The State-Aware OCEL, constructed via SA-OCPM in Celonis (Section 4),
spans December 2022 to April 2024, covering the central warehouse in Germany.
It includes 34 event types, enriched with object states (Understock, Normal,
Overstock), derived from dynamic attributes per Section 3. The log captures
36,439,490 events across two object types: materials (9,648 instances) and pur-
chase order items (33,242,938 instances). Relationships are defined as materials
linking to zero or more purchase order items (0..*), and each purchase order
item linking to one material (1..1), enabling tracking of state dynamics.

Table 1: Overview of event types in the State-Aware OCEL, enriched with object
states (Understock, Normal, Overstock) and object state transition events per
Definition 2, alongside occurrence counts during December 2022 to April 2024.
Goods Issue (Overstock) 24,289,441
Goods Issue (Normal) 8,428,451
Create Sales Order Item (Overstock) 1,684,667
Create Sales Order Item (Normal) 680,844
Goods Issue (Understock) 210,264
Create Purchase Suggestion Item (Overstock) 198,908
Goods Receipt (Overstock) 188,841
Create Purchase Order Item (Overstock) 173,095
Create Purchase Suggestion Item (Normal) 144,586
Create Purchase Order Item (Normal) 121,903
Goods Receipt (Normal) 119,561
Create Sales Order Item (Understock) 93,324
Create Purchase Suggestion Item (Under-
stock)

18,967

Goods Transfer Out (Overstock) 13,822
Create Purchase Order Item (Understock) 9,614
ST CHANGE Normal Overstock 9,396
ST CHANGE Overstock Normal 8,881

ST CHANGE Understock Normal 7,262
ST CHANGE Normal Understock 6,463
Goods Transfer Out (Normal) 5,477
END OVERSTOCK 4,604
END NORMAL 4,093
START OVERSTOCK 3,872
START NORMAL 3,849
Cancel Goods Receipt (Overstock) 3,619
START UNDERSTOCK 1,892
Goods Receipt (Understock) 1,199
Cancel Goods Receipt (Normal) 963
END UNDERSTOCK 916
ST CHANGE Understock Overstock 286
Goods Transfer Out (Understock) 263
Cancel Goods Receipt (Understock) 111
ST CHANGE Overstock Understock 55
Create Purchase Requisition (Normal) 1



State-Aware Object-Centric Process Mining 11

Normal Stock

Overstock

Transition 

Understock

Normal Stock

Overstock

Transition 

Understock

Fig. 3: State-aware object-centric process model derived via SA-OCPM. The left
figure (a) displays the full model with Celonis object coloring (e.g., material in
orange, purchase order item in dark green), extended to show object states: blue
(Overstock), purple (Understock), white (Normal), and light green for object
state transition events per Definition 2. The right figure (b) zooms in to increase
readability.

Object state-aware events (e.g., Goods Issue (Understock)) refine activities
with state context, while object state transition events (e.g., ST CHANGE Nor-
mal to Overstock) explicitly log state shifts, capturing the moment, prior state,
and new state per Definition 2. These link to process activities, ensuring trace-
ability of state-driven dynamics. Table 1 lists event types, associated states, and
occurrence counts.

5.3 Process Discovery

Using SA-OCPM, we derived a state-aware, object-centric process model in Celo-
nis with the Multi-Perspective Process Explorer, leveraging the State-Aware
OCEL from Section 5.2. This model integrates object state-aware events and ob-
ject state transition events, capturing how processes evolve under specific state
conditions, per Definition 2.

For clarity, we applied a semantic color-coding scheme in Celonis, as shown
in Figure 3. Object types are colored per Celonis defaults (orange for materials,
dark green for purchase order items), with manual extensions for states: white
for Normal, purple for Understock, blue for Overstock, and light green for object
state transition events. This visualization highlights state-specific patterns and
critical transitions, enhancing diagnostic precision.

The model reveals state-driven behaviors obscured by traditional OCPM.
For example, object state-aware events like Goods Receipt (Overstock) show con-
tributions to prolonged inefficiencies, while object state transition events track
shifts (e.g., ST CHANGE Normal to Understock), supporting targeted analysis
of bottlenecks and conformance under specific states, explored further below.
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5.4 Main Results

The objective is to identify catalysts of inefficient object states in inventory
processes. Using SA-OCPM, we analyze interactions between materials and pur-
chase order items, leveraging object state-aware events and object state transition
events to pinpoint state-driven inefficiencies.

Over the period, 9,648 materials were tracked, with states distributed as
38.5% Normal, 37.2% Overstock, and 24.3% Understock (see Celonis Dashboard,
Figure 2). These inefficient states impact inventory worth millions of euros,
anonymized for confidentiality. SA-OCPM identifies materials prone to subopti-
mal states.

The state-aware process model reveals patterns:

– Create Purchase Order Item (Normal) transitions to Goods Receipt (Normal)
in 97,589 cases, but to Goods Receipt (Overstock) in 4,473 cases (4.4%) due to
excessive quantities, and to Goods Receipt (Understock) in 247 cases (0.24%)
due to demand underestimation or supplier delays.

– Create Purchase Order Item (Overstock) worsens to Goods Receipt (Over-
stock) in 151,478 cases (98%), driven by poor forecasting, with rare shifts
to Goods Receipt (Normal) (1,124 cases) or Goods Receipt (Understock) (7
cases) from unexpected demand or supplier issues.

– Create Purchase Order Item (Understock) shifts to Goods Receipt (Normal)
in 3,276 cases (75%), fails to resolve in 692 cases (16%) to Goods Receipt (Un-
derstock), and overcompensates to Goods Receipt (Overstock) in 413 cases
(9%), signaling reactive ordering.

Analysis of object state transition events highlights inefficiencies. In 210,186
cases, materials lingered in Understock with active demand but no purchase or-
der, causing 1,460 unfulfilled sales orders. Additionally, 122 materials remained
in Understock despite multiple object state-aware events like Goods Receipt (Un-
derstock), due to insufficient quantities. In 1,520 cases, multiple purchase orders
during Overstock led to excess, reflecting poor synchronization. Recovery times
averaged 246 days for ST CHANGE Overstock to Normal and 87 days for ST
CHANGE Understock to Normal, indicating slow corrections.

SA-OCPM’s explicit modeling of states and transitions uncovers inefficiencies
missed by standard OCPM, such as persistent Understock or excessiveOverstock.
By integrating object state-aware events and object state transition events per
Definitions 2 and 3, SA-OCPM pinpoints catalysts like inaccurate forecasting
and supply delays, offering actionable insights for optimization across domains
with dynamic attributes.

5.5 Process Improvements

To boost inventory efficiency, targeted measures are implemented as automated
Action Flows in Celonis, triggering interventions based on state-aware, object-
centric insights from real-time data. However, full operationalization is pending
due to limited integration with systems like SAP.

For example, an Action Flow in Celonis detects understocked materials with
active demand but no purchase order. It compiles these into a CSV file, stored
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Fig. 4: Celonis Action Flow for Stock Replenishment. Detects understocked ma-
terials with demand, generates a CSV list, stores it on SharePoint, and aims to
trigger a purchase requisition in SAP. Detection works fully; storage and requi-
sition steps await system integration.

on SharePoint, and aims to create a purchase requisition in SAP. Currently, the
final steps remain non-operational due to integration gaps.

Forecasting models now incorporate state awareness to avoid excess pur-
chase orders for overstocked materials and align quantities with demand, reduc-
ing stock imbalances. Synchronized purchasing prevents redundant orders, while
improved demand forecasting and supplier reliability address understock issues.

Purchasing processes proactively replenish understocked materials with ac-
tive demand to prevent shortages. Data-driven, state-oriented interventions via
Celonis swiftly correct inefficient stock states, boosting inventory responsiveness
and supply chain agility.

6 Conclusion and Future Work

This study introduced State-Aware Object-Centric Process Mining (SA-OCPM),
a novel extension of OCEL 2.0, to address the critical gap in modeling and
analyzing object state transitions within complex processes. Revisiting our re-
search questions, we first tackled RQ1. We defined object states (e.g., Normal,
Understock, Overstock) derived from dynamic attributes using domain-specific
models like the Min-Max method, integrating them into OCEL 2.0 through a
state attribute ā as formalized in Definition 2. This enabled precise tracking
of state changes via object state transition events (e.g., ST CHANGE Normal
to Understock). For RQ2, SA-OCPM detects and represents state transitions
through new events and refines existing ones as object state-aware events (e.g.,
Goods Receipt (Understock)), per Definitions 2 and 3. Analysis in Celonis re-
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vealed when transitions occur (e.g., timestamps of shifts to Understock), why
they happen (e.g., supplier delays, poor forecasting), and how they impact pro-
cesses (e.g., unfulfilled sales orders). Finally, for RQ3, our logistics case study
at a European pet retailer demonstrated SA-OCPM’s effectiveness, uncovering
inefficiencies like prolonged Understock (e.g., 210,186 cases with active demand
but no purchase order) and excessive Overstock due to unsynchronized orders.
SA-OCPM advances process mining by embedding state dynamics directly into
event logs, enhancing diagnostic granularity and enabling state-driven interven-
tions, suggesting generalizability to domains like healthcare and manufacturing
with dynamic attributes.

SA-OCPM advances process mining by embedding state dynamics directly
into event logs, enhancing diagnostic granularity and enabling state-driven in-
terventions. Future work will focus on automating state detection with machine
learning to adapt to complex, non-linear state boundaries, integrating SA-OCPM
with real-time systems like SAP for seamless process adjustments, and extend-
ing the framework to multi-object state interactions for deeper insights across
interconnected entities.
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