
Fundamenta Informaticae 175 (2020) 1–40 1

DOI 10.3233/FI-2020-1946

IOS Press

Discovering Object-centric Petri Nets

Wil M.P. van der Aalst∗, Alessandro Berti
Process and Data Science (PADS), RWTH Aachen University

Aachen, Germany

Fraunhofer Institute for Applied Information Technology

Sankt Augustin, Germany

{wvdaalst,a.berti}@pads.rwth-aachen.de

Abstract. Techniques to discover Petri nets from event data assume precisely one case identifier
per event. These case identifiers are used to correlate events, and the resulting discovered Petri net
aims to describe the life-cycle of individual cases. In reality, there is not one possible case notion,
but multiple intertwined case notions. For example, events may refer to mixtures of orders, items,
packages, customers, and products. A package may refer to multiple items, multiple products,
one order, and one customer. Therefore, we need to assume that each event refers to a collection
of objects, each having a type (instead of a single case identifier). Such object-centric event logs
are closer to data in real-life information systems. From an object-centric event log, we want to
discover an object-centric Petri net with places that correspond to object types and transitions
that may consume and produce collections of objects of different types. Object-centric Petri nets
visualize the complex relationships among objects from different types. This paper discusses a
novel process discovery approach implemented in PM4Py. As will be demonstrated, it is indeed
feasible to discover holistic process models that can be used to drill-down into specific viewpoints
if needed.

Keywords: Process mining, Petri nets, Process discovery, Multiple viewpoint models

∗Address for correspondence: Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany, Fraunhofer
Institute for Applied Information Technology, Sankt Augustin, Germany

http://crossmark.crossref.org/dialog/?doi=10.3233%2FFI-2020-1946&domain=pdf&date_stamp=2020-09-28

2 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

1. Introduction

The synthesis of “higher-level” process models from “lower-level” behavioral specifications has been
subject of active research for decades. Examples of such “higher-level” process models are (col-
ored) Petri nets, BPMN models, Statecharts, etc. Examples of “lower-level” behavioral specifications
serving as input for synthesis are transition systems, languages, partial orders, and scenarios. In the
context of Petri nets, the “Theory of Regions” has been very influential. Regions were introduced
for elementary nets and transition systems in the seminal paper [1]. The goal was to create a Petri
net with a reachability graph that is isomorphic to the transition system used as input. The core idea
has been generalized in numerous directions. Different classes of target models have been investi-
gated [2, 3, 4, 5], e.g., bisimilar Place Transition (P/T) nets [6], Petri nets with arc weights [7, 8],
Petri nets with a/sync connections [9], τ -nets [5], zero-safe nets [10], etc. Typically, a transition sys-
tem is used as input. However, there are various region-based approaches taking as input languages
[11, 12, 13, 14, 15, 16], partial orders/scenarios [17, 18, 19], or other “lower-level” behavioral speci-
fications.

Process mining is related to the field of synthesis (in particular language-based regions). However,
the assumptions and goals are very different. Whereas classical synthesis approaches aim to obtain
a “higher-level” process model that compactly describes the behavior of a “lower-level” behavioral
specification, process mining techniques face a more difficult problem. The event logs used as input for
process discovery typically contain only a fraction of the possible behavior. Traces in an event log can
be seen as examples. If there are loops, one cannot expect to see all possible traces. If a model contains
concurrency, one cannot expect to see all possible interleavings. If the model has multiple choices, one
cannot expect to witness all possible combinations. There have been many attempts to extend region-
based approaches to this setting [20, 11, 21, 22]. Unfortunately, region-based techniques are often
computationally intractable, lead to overfitting models, and/or cannot discover process constructs such
as skipping and mixtures of choice and synchronization (e.g., OR-joins). Hence, several more scalable
and robust techniques have been developed. Commercial tools typically still resort to learning the so-
called Directly Follows Graph (DFG) which typically leads to underfitting process models [23]. When
activities appear out of sequence, loops are created, thus leading to Spaghetti-like diagrams suggesting
repetitions that are not supported by the data. The inductive mining techniques [24, 25] and the so-
called split miner [26] are examples of the state-of-the-art techniques to learn process models. These
techniques are able to generalize and uncover concurrency.

This paper focuses on process discovery. However, rather than presenting a new discovery tech-
nique for traditional event logs, we start from object-centric event logs [27]. In a traditional event log
each event is related to one activity, one timestamp, and one case (i.e., a process instance). We still
make the assumption that each event refers to an activity and a point in time. However, we do not
assume the existence of a single case notion. Instead, an event may refer to any number of objects
and these objects may be of different types. This extends the reach of process mining dramatically.
The step is comparable to going from Place Transition (P/T) nets to colored Petri nets. Objects can be
viewed as colored tokens and object types can be seen as color sets (i.e., place types).

Based on object-centric event logs, we aim to automatically discover object-centric Petri nets.
Such Petri nets have typed places that refer to the object types in the event log. Just like in colored

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 3

Each row corresponds to an event which
refers to one activity and any number of

objects of (possibly many) different types.

extract from
data sources

One of the 21887 events:
 activity: package delivered
 time: 2019-12-24 20:46:47
 orders involved: {991119,991030,991209,991254,
991213,991206}
 items involved: {884386,884020,884749,884930,
884926,884925,884766,884927,884736}
 packages involved: {660784}
 customers involved: {Kefang Ding}
 products involved: {iPad Air,Echo Dot,MacBook
Pro,iPad Air,Kindle Paperwhite,iPad Air,iPad Pro,
iPad,iPhone 11 Pro}
 total price: € 6.829,99
 total weight: 4,719 KG

automatically
discovered object-

centric Petri net

 object-centric event log

 object-centric Petri net

Figure 1. Overview of the approach presented in this paper. Object-centric event logs are used as an interme-
diate format in between the actual data sources and traditional event logs requiring a single case notion. Using
this input, we discover object-centric Petri nets that are able to describe multiple object types in a single model.

Petri nets, a transition may consume or produce multiple tokens from a place during one execution. In
this paper, we present the first technique to discover such nets. In the related work section (Section 9),
we elaborate on the relation to earlier approaches such as the Object-Centric Behavioral Constraint
(OCBC) models [28], synchronized transitions systems [29, 30], and artifact-centric discovery ap-
proaches [31, 32, 33].

Figure 1 illustrates the approach presented. Object-centric event logs can be extracted from any
information system [27]. These logs can be seen as an intermediate format closer to the actual data
collected by today’s information systems. Unlike traditional event logs (e.g., XES logs), an event
may refer to multiple objects and is not forced to be assigned to a single case. Enterprise Information

4 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

Systems (EIS), Customer Relationship Management (CRM) systems, Healthcare Information Systems
(HIS), E-Learning Systems, Production Systems, Supply Chain Systems, etc. typically store informa-
tion on a range of objects (customer, orders, patients, products, payments, etc.) in multiple tables
that refer to each other. Figure 1 shows the objects related to one “package delivered” event. The
event refers to six orders, nine items, one package, one customer, and nine products. In total, there
are 22,367 events. Figure 1 shows an object-centric Petri net (not intended to be readable) discovered
while focusing on orders, items, and packages. The places and arcs are typed. The colors red, green,
and purple refer to respectively orders, items, and packages.

Just like for traditional process mining approaches it is possible to filter and seamlessly simplify
the process model. By focusing on a particular object type, it is also possible to create traditional
events logs that can be analyzed using traditional process mining techniques.

The remainder of this paper is organized as follows. Section 2 introduces event logs and process
models. Object-centric event logs are introduced and motivated in Section 3. Given such logs, we
first discuss techniques to learn process models for a single object type in Section 4. In Section 5,
we introduce object-centric Petri nets, i.e., Petri nets with places referring to object types. Section 6
presents the main contribution of this paper: An approach to learn object-centric Petri nets from object-
centric event logs. The discovery technique has been implemented in PM4Py, an open-source process
mining platform written in Python. Section 7 presents the implementation and Section 8 demonstrates
the feasibility of the approach. Related work is discussed in Section 9. Section 10 concludes the paper
with a few final remarks.

2. Preliminaries

First, we introduce some preliminaries for people not familiar with process mining and accepting Petri
nets. Input for process mining is an event log. A traditional event log views a process from a particular
angle provided by the case notion that is used to correlate events. Each event in such an event log
refers to (1) a particular process instance (called case), (2) an activity, and (3) a timestamp. There may
be additional event attributes referring to resources, people, costs, etc., but these are optional. With
some effort, such data can be extracted from any information system supporting operational processes.
Process mining uses these event data to answer a variety of process-related questions. Process mining
techniques such as process discovery, conformance checking, model enhancement, and operational
support can be used to improve performance and compliance [34].

Each event in an event log has three mandatory attributes: case, activity, and timestamp. The
case notion is used to group events, e.g., all events corresponding to the same order number are taken
together. The timestamps are used to order the events and can be used to analyze bottlenecks, delays,
etc. There may be many additional attributes, e.g., costs, resource, location, etc. However, most
process discovery techniques first learn a model where only the order of activities within cases matters.
Once the control-flow is clear, other attributes (e.g., time) can be added by replaying the event log on
the model [34]. Therefore, we define a so-called “simple event log” that only records the ordering of
activities for each case. Technically, an event log is a multiset of traces. B ∈ B(X) = X → IN is a
multiset over X where element x ∈ X appears B(x) times. For example, in B = [a5, b2, c], a appears
B(a) = 5 times, b twice, and c once.

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 5

Definition 2.1. (Simple Event Log)
Let Uact be the universe of activity names. A trace σ ∈ U∗act is a sequence of activities. L ∈ B(U∗act)
is an event log, i.e., a multiset of traces. USEL = B(U∗act) is the universe of simple event logs.

For example, Uact = {po, pi , sh, in, sr , pa, co, . . .} where po denotes activity place order, pi
denotes activity pick item, sh denotes activity ship item, in denotes activity send invoice, sr denotes
activity send reminder, pa denotes activity pay order, and co denotes activity mark as completed.
Using this more compact notation we show three example traces: σ1 = 〈po, in, pi , sr , sh, pa, co〉,
σ2 = 〈po, pi , sh, in, pa, co〉, and σ3 = 〈po, in, sr , sr , pi , sr , pa, sh, co〉. Obviously, multiple cases
can have the same trace. In an event log L = [σ1

435, σ2
366, σ3

233, . . .] the above three traces appear
respectively 435, 366, and 233 times. Given such an event log, process discovery techniques are
able to learn a process model describing the observed traces. Such techniques often take into account
frequencies, e.g., the model should cover the most frequent traces but may decide to abstract from
infrequent ones. Figure 2 shows a process model discovered for event log L.

po

in pi

sr

pa sh

co

place
order

pick
item

ship
item

send
invoice

pay
order

send
reminder

mark as
completed

p2

p1

p3

p4 p5

p6 p7

p8

Figure 2. An accepting Petri net composed of eight places and seven transitions.

The discovered process model in Figure 2 is represented as an accepting Petri net where the transi-
tions are labeled. We assume that the reader is familiar with standard Petri nets notations, but provide
a few definitions to make the key notions explicit. We use Petri nets with a labeling function and final
marking. This is driven by requirements from process mining. The labeling function is needed to
model skips and duplicate activities. The final marking is needed because traces have a defined start
and end.

6 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

Definition 2.2. (Labeled Petri Net)
A labeled Petri net is a tuple N = (P, T, F, l) with P the set of places, T the set of transitions,
P ∩ T = ∅, F ⊆ (P × T) ∪ (T × P) the flow relation, and l ∈ T 6→ Uact a labeling function.

A Petri net defines a directed graph with nodes P ∪T and edges F . The state of a Petri net, called
marking, is a multiset of places (M ∈ B(P)). A transition t ∈ T is enabled in marking M of net N if
each of its input places •t = {p ∈ P | (p, t) ∈ F} contains at least one token. An enabled transition
t may fire, i.e., one token is removed from each of the input places •t and one token is produced for
each of the output places t• = {p ∈ P | (t, p) ∈ F}. Assume that [p1] is the initial marking of
the Petri net in Figure 2. There are 11 markings reachable from this initial marking, including [p1],
[p2 , p3], [p4 , p7], and [p8].

Note that the labeling function l may be partial and non-injective. This means that multiple tran-
sitions may refer to the same activity and that there may be transitions that are “silent” and do not
correspond to an activity. Any firing sequence of a labeled Petri net corresponds to a visible trace
obtained by mapping transitions onto activities using l. Firing an unlabeled transition does not add an
activity to the trace. In Figure 2, all transitions are visible and unique. σ1, σ2, and σ3 are examples of
visible traces (assuming the short names as activity labels).

For process mining, we often focus on so-called accepting Petri nets that have an initial marking
and a final marking. The reason is that we want to have a model that defines a language corresponding
to the process that was used to produce the event log.

Definition 2.3. (Accepting Petri Net)
An accepting Petri net is a triplet SN = (N,Minit ,Mfinal) where N = (P, T, F, l) is a labeled Petri
net, Minit ∈ B(P) is the initial marking, and Mfinal ∈ B(P) is the final marking. UAPN is the
universe of accepting Petri nets.

In Figure 2, the initial marking Minit = [p1] and the final marking Mfinal = [p8] are denoted
using the start and stop symbol.

Definition 2.4. (Language of an Accepting Petri Net)
An accepting Petri net SN = (N,Minit ,Mfinal) defines a language φ(SN) that is composed of all vis-
ible traces (ignoring transition occurrences not having a label) starting in Minit and ending in Mfinal .

The accepting Petri net depicted in Figure 2 has infinitely many visible traces due to the loop
involving sr . Without the loop, there would be six possible visible traces.

Assuming the basic setting with simple event logs and accepting Petri nets, we can now formally
define the notion of process discovery. For any event log, we would like to construct a corresponding
process model.

Definition 2.5. (Process Discovery Technique)
Discovery technique disc is a function mapping simple event logs onto accepting Petri nets, i.e.,
disc ∈ USEL → UAPN .

What makes process mining very difficult is that the event log only contains example behaviors.
If Figure 2 represents the real process, we have the problem that no event log will contain all of its

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 7

traces (due to the loop). Even when there are no loops, it is very unlikely to observe all possible traces
for real-life processes due to combinations of choices and the interleaving of concurrent activities.
Typically, only a fraction of the possible process is observed. Moreover, the event log may contain
noise and infrequent behaviors that should not end up in the process model. This leads to notions such
as recall (also called fitness), precision, generalization, and simplicity [34]. These are outside of the
scope of this paper. However, we abstractly define the notion of conformance checking.

Definition 2.6. (Conformance Checking Technique)
Conformance checking technique conf is a function mapping a pair composed of an event log and an
accepting Petri nets onto conformance diagnostics, i.e., conf ∈ (USEL × UAPN)→ Udiag .

conf (L,SN) ∈ Udiag provides diagnostics related to recall, precision, generalization, simplicity,
etc. An example would be the fraction of traces in the event log that can be replayed by the accepting
Petri net: conf (L,SN) = |[σ ∈ L | σ ∈ φ(SN)]| / |L|. Given L′ = [〈po, pi , sh, in, pa, co〉8, 〈po,
sh, pi , in, pa, co〉2] and SN shown in Figure 2, conf (L′,SN) = 0.8 given this conformance notion.
Many other measures and diagnostics are possible. However, we leave Udiag deliberately vague.

3. Object-centric event logs

Section 2 provided a basic introduction to process mining, assuming that there is a clear case notion.
In this section, we show that, for many applications, this assumption is not realistic (Section 3.1).
Next, we formalize the notion of object-centric event logs (Section 3.2).

3.1. What if there is not a single case identifier?

In many applications, there are multiple candidate case notions leading to different views on the same
process [27]. Moreover, one event may be related to different cases (convergence) and, for a given
case, there may be multiple instances of the same activity within a case (divergence). To create a
traditional process model, the event data need to be “flattened”. There are typically multiple choices
possible, leading to different views that are disconnected or inconsistent.

To introduce the problem, consider the event log shown in Table 1. The table shows that each
order may correspond to multiple items that are picked and shipped separately. This is a more realistic
assumption (shops tend to allow customers to buy more than one product per order).

Table 1 has a column for order identifiers and item identifiers. Order 99001 corresponds to three
items (88124, 88125, and 88126), order 99002 corresponds to two items (88127 and 88128), order
99003 corresponds to one item (88129), and order 99004 corresponds to five items (88130, 88131,
88132, 88133, and 88134). The pick and ship activities are executed for individual items. An order is
marked as completed when all items have been picked and shipped and the order itself was paid. Note
that the events place order and mark as completed for order 99001, both refer to four objects (one order
and three items). The latter number is variable. For example, the event place order for order 99003
refers to only two objects. This cannot be expressed using the accepting Petri nets introduced before.
Transitions need to consume and produce a variable number of tokens of different types. Therefore,
we propose to use object-centric Petri nets. Note that we do not propose such nets as a new modeling

8 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

Table 1. A fragment of an event log: Each line corresponds to an event, possibly referring to multiple objects
(i.e., orders and items).

activity timestamp order item

.

place order 25-11-2019:09.35 {99001} {88124, 88125, 88126}
pick item 25-11-2019:10.35 ∅ {88126}

place order 25-11-2019:11.35 {99002} {88127, 88128}
pick item 26-11-2019:010.25 ∅ {88124}

send invoice 27-11-2019:08.12 {99001} ∅
send invoice 28-11-2019:09.35 {99002} ∅

pick item 29-11-2019:09.35 ∅ {88127}
send reminder 29-11-2019:10.35 {99002} ∅

pick item 29-11-2019:11.15 ∅ {88128}
ship item 29-11-2019:12.35 ∅ {88124}
pick item 29-11-2019:13.30 ∅ {88125}

send reminder 29-11-2019:14.35 {99001} ∅
ship item 29-11-2019:15.15 ∅ {88125}

send reminder 29-11-2019:16.15 {99002} ∅
ship item 29-11-2019:17.45 ∅ {88126}
ship item 29-11-2019:18.00 ∅ {88128}

send reminder 30-11-2019:09.35 {99002} ∅
ship item 30-11-2019:10.05 ∅ {88127}
pay order 30-11-2019:11.45 {99002} ∅
pay order 30-11-2019:12.55 {99001} ∅

mark as completed 01-12-2019:09.35 {99001} {88124, 88125, 88126}
place order 02-12-2019:10.40 {99003} {88129}

mark as completed 04-12-2019:11.05 {99002} {88127, 88128}
place order 06-12-2019:14.18 {99004} {88130, 88131, 88132, 88133, 88134}

.

language. It can be viewed as a subclass of colored Petri nets, but our focus is on learning a model
describing the data in Table 1. Hence, we limit the modeling notation to what can be discovered for
such data.

Figure 3 shows the object-centric Petri net we want to discover based on the event data in Table 1.
There are now two types of places: the places that correspond to orders (colored green) and the places
that correspond to items (colored blue). Transitions are colored based on the object types they refer
to. Note that transitions po and co have two colors. A transition may consume multiple tokens from
a place or produce multiple tokens for a place. The places and arcs involved in events that consume
or produce multiple objects have compound double arrows to highlight this. Transition po in Figure 3
consumes one order object from place o1 and a variable number of items from place i1 . po produces
one order object for place o2 and a variable number of items for place i2 . Transition pi in Figure 3
consumes one item object from place i2 and produces one item object for place i3 . The items are
also shipped individually. However, transition co in Figure 3 consumes one order object from place
o4 and all items corresponding to the order from place i4 .

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 9

po

in pi

sr

pa sh

co

place
order

pick
item

ship
item

send
invoice

pay
order

send
reminder

mark as
completed

o2

o1

i2

o3 i3

o4 i4

o5

i1

Order

Order

Order

Order

Order

i5

Item

Item

Item

Item

Item

Figure 3. An object-centric Petri nets with two object types: Order and Item .

Although existing discovery techniques cannot handle the event data in Table 1, this is still a
relatively simple scenario since there is a one-to-many relationship between orders and items. In real-
life applications, there may also be many-to-many relationships. To illustrate this, consider the event

Table 2. A small fragment of a simple event log with three types of objects.

activity timestamp order item route

.

place order 25-11-2019:09.35 {99001} {88124, 88125, 88126} ∅
place order 25-11-2019:11.35 {99002} {88127, 88128} ∅

.

start route 25-11-2019:11.35 ∅ {88124, 88127} {66222}
end route 25-11-2019:11.35 ∅ {88124, 88127} {66222}
.

start route 25-11-2019:11.35 ∅ {88125, 88126, 88128} {66223}
end route 25-11-2019:11.35 ∅ {88125, 88126, 88128} {66223}
.

mark as completed 01-12-2019:09.35 {99001} {88124, 88125, 88126} ∅
mark as completed 04-12-2019:11.05 {99002} {88127, 88128} ∅

.

10 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

log fragment depicted in Table 2 where we added routes. On any particular route, multiple items can
be delivered. The ship item activity is now replaced by the start route and end route activities that may
refer to items from different orders. As shown in Table 2, route 66222 refers to two items (88124 and
88127) belonging to orders 99001 and 99002. Route 66223 refers to three items (88125, 88126, and
88128) belonging to orders 99001 and 99002.

Again it is obvious that this cannot be modeled using traditional process models that assume a
single case notion.

po

in pi

sr

pa

co

place
order

pick
item

send
invoice

pay
order

send
reminder

mark as
completed

o2

o1

i2

o3

i3

o4

i5

o5

i1

Order

Order

Order

Order

Order

i6

Item

Item

Item

Item

Item

st
start
route

en
end

route

r3

route

Item route

route

r1

r2i4

Figure 4. An object-centric Petri nets with three object types: Order , Item , and Route .

Figure 4 shows the object-centric Petri net discovered from the event log referred to by Table 2.
There are now three types of places: order places (colored green), item places (colored blue), and route
places (purple). Transition st in Figure 4 consumes a variable number of item objects from place i3
and one route object from place r1 . st produces a variable number of item objects for place i4 and
one route object for place r2 . The coloring of the transitions and places and the two different types of
arcs show the behaviors observed in the event log.

The problem is that existing process mining techniques assume a “flattened event log” where each
event refers to precisely one case. However, we would like to see process models such as the one
depicted in Figure 4. One quickly encounters the problems described in this section when apply-
ing process mining to ERP systems from SAP, Oracle, Microsoft, and other vendors of enterprise
software.

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 11

3.2. Formalizing object-centric event logs

Tables 1 and 2 illustrate the type of data we use as input for discovery. Such data are in-between
the real data in information systems (e.g., multiple tables in a relational database) and the traditional
event data stored in the eXtensible Event Stream (XES) format [35]. Whereas XES requires one case
identifier per event, our format supports any number of objects of different types per event. To define
our object-centric event logs, we first define several universes used in the remainder (based on [27]).

Definition 3.1. (Universes)
We define the following universes to be used throughout the paper:

• Uei is the universe of event identifiers,

• Uact is the universe of activity names (also used to label transitions in an accepting Petri net),

• Utime is the universe of timestamps,

• Uot is the universe of object types (also called classes),

• Uoi is the universe of object identifiers (also called entities),

• type ∈ Uoi → Uot assigns precisely one type to each object identifier,

• Uomap = {omap ∈ Uot 6→ P(Uoi) | ∀ot∈dom(omap) ∀oi∈omap(ot) type(oi) = ot} is the
universe of all object mappings indicating which object identifiers are included per type,1

• Uatt is the universe of attribute names,

• Uval is the universe of attribute values,

• Uvmap = Uatt 6→ Uval is the universe of value assignments,2 and

• Uevent = Uei × Uact × Utime × Uomap × Uvmap is the universe of events.

An event e = (ei , act , time, omap, vmap) ∈ Uevent is characterized by a unique event identifier
ei , the corresponding activity act , the event’s timestamp time , and two mappings omap and vmap
for respectively object references and attribute values.

Definition 3.2. (Event Projection)
Given e = (ei , act , time, omap, vmap) ∈ Uevent , πei(e) = ei , πact(e) = act , πtime(e) = time ,
πomap(e) = omap, and πvmap(e) = vmap.

πomap(e) ∈ Uot 6→ P(Uoi) maps a subset of object types onto sets of object identifiers for an event
e. Consider for example the first visible event in Table 2 and assume this is e. πomap(e)(Order) =
{99001}, πomap(e)(Item) = {88124, 88125, 88126}, and πomap(e)(Route) = ∅. Moreover, πact(e) =
place order and πtime(e) = 25-11-2019:09.35. dom(πvmap(e)) = ∅ since no attribute values are men-
tioned in Table 2. If the event would have a cost of 30 euros and location Aachen, then πvmap(e)(cost) =
30 and πvmap(e)(location) = Aachen.

1P(Uoi) is the powerset of the universe of object identifiers, i.e., objects types are mapped onto sets of object identifiers.
omap ∈ Uot 6→ P(Uoi) is a partial function. If ot 6∈ dom(omap), then we assume that omap(ot) = ∅.
2Uatt 6→ Uval is the set of all partial functions mapping a subset of attribute names onto the corresponding values.

12 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

An object-centric event log is a collection of partially ordered events. Event identifiers are unique,
i.e., two events cannot have the same event identifier.

Definition 3.3. (Object-Centric Event Log)
L = (E,�E) is an event log with E ⊆ Uevent and �E ⊆ E × E such that:

• �E defines a partial order (reflexive, antisymmetric, and transitive),

• ∀e1,e2∈E πei(e1) = πei(e2) ⇒ e1 = e2, and

• ∀e1,e2∈E e1 �E e2 ⇒ πtime(e1) ≤ πtime(e2).

Definition 3.3 allows for partially ordered event logs. However, in practice, we often use a total
order, e.g., events are ordered based on timestamps and when two events have the same timestamp
we assume some order. In the tabular format used before (e.g., Table 2) we were also forced to use a
total order. However, there are process discovery techniques that take into account causalities [27, 36].
These can exploit such partial orders.

4. Discovering Petri nets for a single object type

Object-centric event logs generalize the traditional event log notion where each event has precisely
one case identifier. We can mimic such logs using a special object type case ∈ Uot such that
|πomap(e)(case)| = 1 for any event e ∈ E. Since traditional process mining techniques assume
this, it is common practice to convert event data with events referring to a variable number of objects
to classical event logs by “flattening” the event data. Assume that we take a specific object type as a
case identifier. If an event has multiple objects of that type, then we can simply create one event for
each object. If an event has no objects of that type, then we simply omit the event. If an event has
precisely one object of the selected type, then we keep that event. This can be formalized as follows.

Definition 4.1. (Flattening Event Logs)
Let L = (E,�E) be an object-centric event log and ot ∈ Uot an object type serving as a case notion.
The flattened event log is Lot = (Eot ,�ot

E) with:3

• ei = ((πei(e), i), πact(e), πtime(e), πomap(e) ⊕ (case, {i}), πvmap(e)) for any e ∈ E and i ∈
πomap(e)(ot),

• Eot = {ei | e ∈ E ∧ i ∈ πomap(e)(ot)}, and

• �ot
E= {(e′i, e′′j) ∈ Eot ×Eot | e′ ∈ E ∧ i ∈ πomap(e

′)(ot) ∧ e′′ ∈ E ∧ j ∈ πomap(e
′′)(ot) ∧

e′ �E e′′ ∧ (e′ = e′′ ⇒ i = j)}.

A flattened event log is still an event log after removing and duplicating events.

3f ′ = f ⊕ (x, y) is a function such that dom(f ′) = dom(f) ∪ {x}, f ′(x) = y and f ′(z) = f(z) for z ∈ dom(f) \ {x}.

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 13

Lemma 4.2. Let L = (E,�E) be an object-centric event log and ot ∈ Uot an object type serving
as a case notion. The flattened event log Lot = (Eot ,�ot

E) is indeed an event log as defined in
Definition 3.3.

Proof:
�ot
E defines a partial order. For any ei ∈ Eot , ei �ot

E ei (reflexive). If e′i �ot
E e′′j and e′′j �ot

E e′i,
then e′ = e′′ and i = j, and hence also e′i = e′′j (antisymmetric). If e′i �ot

E e′′j and e′′j �ot
E e′′′k , then

e′ �E e′′, e′′ �E e′′′, (e′ = e′′ ⇒ i = j), and (e′′ = e′′′ ⇒ j = k). Hence, e′ �E e′′′ (�E is
transitive). If e′ 6= e′′′, then e′i �ot

E e′′′k due to the definition of �ot
E . If e′ = e′′′, then e′ = e′′ and

e′′ = e′′′. Hence, i = j and j = k (see above), and i = k. Again we conclude that e′i �ot
E e′′′k

(transitive). If πei(e
′
i) = πei(e

′′
j), then (e′, i) = (e′′, j) making event identifiers unique. If e′i �ot

E e′′j ,
then e′ �E e′′. Hence, πtime(e

′
i) = πtime(e

′) ≤ πtime(e
′′) = πtime(e

′′
j) showing that time cannot go

backwards. ut

Table 2 shows eight events (the rest is omitted). Assume L = (E,�E) is the log consisting of only
these eight events. The flattened event logLOrder = (EOrder ,�Order

E) has four events (the four middle
events in Table 2 are removed). The flattened event logLItem = (EItem ,�Item

E) has 20 events since all
original events are replicated two or three times. The flattened event log LRoute = (ERoute ,�Route

E)
has four events.

Assume now that L = (E,�E) is flattened using object type ot leading to event log Lot =
(Eot ,�ot

E). We then have a conventional event log with a selected case notion and can apply all exist-
ing process mining techniques. However, flattening the event log using ot as a case notion potentially
leads to the following problems.

• Deficiency: Events in the original event log that have no corresponding events in the flattened
event log disappear from the data set (i.e., πomap(e)(ot) = ∅).

• Convergence: Events referring to multiple objects of the selected type are replicated, possibly
leading to unintentional duplication (i.e., |πomap(e)(ot)| ≥ 2).

• Divergence: Events referring to different objects of a type not selected as the case notion are
considered to be causally related. For example, two events refer to the same order but different
times or two events refer to the same route but different items.

Definition 4.3. (Deficiency, Convergence, and Divergence)
Let L = (E,�E) be an object-centric event log and Lot = (Eot ,�ot

E) the flattened event log
based on object type ot ∈ Uot . Event e ∈ E has a deficiency problem if πomap(e)(ot) = ∅
(i.e., the event is ignored when using ot as case notion). Event e ∈ E has a convergence prob-
lem if |πomap(e)(ot)| ≥ 2 (i.e., the event is unintentionally replicated when using ot as case no-
tion). Event e ∈ E has a divergence problem if there exist another event e′ ∈ E and object type
ot ′ ∈ Uot such that πomap(e)(ot) 6= ∅, πomap(e

′)(ot) 6= ∅, πomap(e)(ot
′) 6= ∅, πomap(e

′)(ot ′) 6= ∅,
πomap(e)(ot) = πomap(e

′)(ot), and πomap(e)(ot
′) 6= πomap(e

′)(ot ′).

Note that in case of divergence, there are two events e and e′ and two candidate case notions ot
and ot ′ such that both events refer to objects of both object types and the events “agree” on ot but not
on ot ′.

14 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

Consider again the eight events shown in Table 2. When taking Order or Route as the object type
used to flatten the event log, half the events disappear (deficiency). When taking Item as the object type
used to flatten the event log, the first event is replaced by three place order events, the second event is
replaced by two place order events, etc. This is misleading since these replicated events occurred only
once (convergence). To explain divergence, assume that an order consists of 10 items and object type
Order is used to flatten the event log. There will be 10 pick events that are executed in a given order.
Although they are independent, they will seem to be causally related (same case) and most discovery
algorithms will introduce a loop, although there is precisely one pick event per item.

po

pi

co

place
order

pick
item

mark as
completed

i2

i3

i5

i1

i6

Item

Item

Item

Item

Item

st
start
route

en
end

route

Item

i4

st
start
route

en
end

route

r3

route

route

route

r1

r2

po

in

sr

pa

co

place
order

send
invoice

pay
order

send
reminder

mark as
completed

o2

o1

o3

o4

o5

Order

Order

Order

Order

Order

100

100

100

100

50

100 500

500

500

500

500 10

10

10

500

Figure 5. Three accepting Petri nets discovered for the three flattened event logs: (EOrder ,�Order
E) (left),

(EItem ,�Item
E) (middle), and (ERoute ,�Route

E) (right). The numbers in red refer to the total number of tokens
produced or consumed per arc.

Figure 5 shows three process models discovered for three flattened event logs: LOrder = (EOrder ,
�Order
E), LItem = (EItem ,�Item

E), and LRoute = (ERoute ,�Route
E). For example, the accepting Petri

net in the middle was discovered based on LItem , i.e., the original event log flattened using object type
Item. Assume that there are 100 orders with on average 5 items per order. This implies that there are
500 items. Assume that each route consists, on average, of 50 items that need to be delivered, i.e.,
there are 10 routes in total. These numbers are depicted in Figure 5. Although the three accepting
Petri nets look reasonable, they do not “fit” together (the frequencies of the corresponding activities
are different). For example, in the left model (order) the place order activity is performed 100 times
and in the middle model (item) the same activity is executed 500 times (factor 5). In the right model
(route) the start route activity is performed 10 times and in the middle model (item) the same activity
is executed 500 times (factor 50). These mismatches illustrate the convergence problem. One could
argue that the accepting Petri net in the middle is wrong because the frequencies of activities do not
match the frequencies in the original process model.

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 15

po

pi

co

place
order

pick
item

mark as
completed

i2

i3

i5

i1

i6

Item

Item

Item

Item

Item

st
start
route

en
end

route

Item

i4

500

500

500

500

500

500

po

pi

co

place
order

pick
item

mark as
completed

i2

i3

i5

i1

i6

Item

Item

Item

Item

Item

st
start
route

en
end

route

Item

i4

100

100x5

100x5 10x50

10x50

10

10x50

10x50

500

500

500

100

100x5

100x5

10

500

500

500

500

500

500

There were 500 item objects
flowing from i1 to i6.

Activity place order
occured 100 times.

Activity place order consumed 100
times a variable number of item

objects from i1. On average, 5 item
objects were consumed per round.

Activity place order produced 100
times a variable number of item
objects from i1. On average, 5 item
objects were produced per round.

Activity pick item occurred
500 times each time

consuming and producing
precisely one item object.

Activity start route occurred 10 times.
Each time a variable number of item
objects was consumed from i3 and the
same number was produced for i4. On
average, 50 item objects were
produced/consumed per round.

Activity end route occurred 10 times.
Each time a variable number of item
objects was consumed from i4 and the
same number was produced for i5. On
average, 50 item objects were
produced/consumed per round.

Activity mark as completed occurred
100 times. Each time a variable number

of item objects was consumed from i5
and the same number was produced for

i6. On average, 5 item objects were
produced/consumed per round.

Figure 6. The model on the left was discovered for LItem = (EItem ,�Item
E). Because of flattening, the

frequencies of activities are not correct. However, it is known which transition occurrences belonged to each
event and we can regroup them. This can be used to merge occurrences, leading to the process model on the
right.

Figure 6 sketches how the problem of incorrect activity frequencies can be resolved using variable
arcs, i.e., arcs that can be used to consume or produce multiple tokens in one step. Such “multiset
arcs” are also possible in colored Petri nets [37, 38]. When an event was replicated to produce the “flat
model” (e.g., Figure 5), we can merge the corresponding transition occurrences into one transition
occurrence that may consume and produce multiple tokens. See for example transition place order. In
the accepting Petri net on the left, transition place order fires 500 times when replaying the flattened
event log LItem . However, we know exactly which transition occurrences belong together. This can be
used to reconstruct transition occurrences that consume and produce a variable number of tokens in one
step. For transition place order this means that 500 occurrences are merged onto 100 occurrences that,
on average, consume and produce 5 tokens per arc. To indicate this, we use compound double arrows
with the annotation 100 × 5. Next, consider transition start route. In the model on the left, transition
start route fires 500 times. However, we know exactly which of these 500 transition occurrences
belong to the 10 routes.

Again these low-level transition occurrences can be merged into higher-level transition occur-
rences that consume and produce a variable number of tokens in one step. For transition start route
this means that there are 10 occurrences that, on average, consumer and produce 50 tokens per arc.
To indicate this, we use again compound double arrows, but now with the annotation 10 × 50. Only
the occurrences of pick item did not change due to flattening. Hence, the corresponding arcs did not
change.

Figure 6 sketches how we can create Petri nets for one object type where the frequency of each
transition matches the actual number of corresponding events in the event log. These models can be
merged into more holistic process models showing the different object types as is shown next.

16 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

5. Object-centric Petri nets

As indicated in the previous sections, we need to be able to distinguish the different object types and a
single event (i.e., transition occurrence) may involve a variable number of objects (e.g., one order may
have any number of items). An obvious way to model such processes is to use colored Petri nets where
places can have different types [37, 38]. Figure 7 shows a screenshot of CPN Tools while simulating
the scenario with 100 orders, 500 items, and 10 routes described before. The color sets Order, Item,
and Route are used to type the places. The ten arcs with the annotation or produce or consume a
single order. The two arcs with the annotation it produce or consume a single item. The four arcs
with the annotation rt produce or consume a single route. There are eight arcs with the annotation its
which is a variable of type Items, i.e., a list of items. These consume or produce a variable number of
item objects. The four guards determine the correspondence between orders, routes, and items. For
example, the guard [its = oi(or)] of transition place order specifies the set of items its involved in
a specific order or. The same guard is used for transition mark as completed. Transitions start route
and end route use guard [its = ri(rt)] to determine the items its involved in route rt.

Figure 7. A colored Petri net in CPN Tools [37, 38] modeling the process depicted in Figure 4 which was
discovered from the event data in Table 2.

Figure 7 shows that one can model processes involving multiple objects using colored Petri nets
(or related formalisms). However, it is infeasible to discover an arbitrary colored Petri net from an
(object-centric) event log. We need a representational bias that corresponds to the information in the
event log. Therefore, we aim to discover a specific type of colored Petri net. To simplify matters, we

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 17

also abstract from the matching between the different objects (i.e., the guards in Figure 7). This allows
us to use a more specific and more abstract representation called object-centric Petri net.4

Definition 5.1. (Object-Centric Petri Net)
An object-centric Petri net is a tuple ON = (N, pt , Fvar) where N = (P, T, F, l) is a labeled Petri
net, pt ∈ P → Uot maps places onto object types, and Fvar ⊆ F is the subset of variable arcs.

Figure 4 shows an object-centric Petri net: P = {o1, . . . , o5, i1, . . . , i6, r1, r2, r3}, T = {po, in,
pi , . . .}, F = {(o1, po), (i1, po), (po, o2), (po, i2), . . .}, l(po) = place order, l(in) = send invoice,
etc., pt(o1) = Order , pt(i1) = Item , pt(r1) = Route , etc., and Fvar = {(i1, po), (po, i2), . . .}.
Note that the graphical notation in Figure 4 fully defines the object-centric Petri net.

Definition 5.2. (Well-Formed)
Let ON = (N, pt , Fvar) be an object-centric Petri net with N = (P, T, F, l). We introduce the
following notations:

• pl(t) = •t ∪ t• are the input and output places of t ∈ T , plvar (t) = {p ∈ P | {(p, t), (t, p)} ∩
Fvar 6= ∅} are the input and output places connected through variable arcs, and plnv (t) = {p ∈
P | {(p, t), (t, p)} ∩ (F \ Fvar) 6= ∅} are the places connected through non-variable arcs.

• tpl(t) = {pt(p) | p ∈ pl(t)}, tplvar (t) = {pt(p) | p ∈ plvar (t)}, and tplnv (t) = {pt(p) | p ∈
plnv (t)} are the corresponding place types.

ON is well-formed if for each transition t ∈ T : tplvar (t) ∩ tplnv (t) = ∅.

In a well-formed object-centric Petri net, the arcs should “agree” on variability, i.e., a combination
of an object type and transition has variable arcs or normal arcs but not both. For example, because
(i1, po) ∈ Fvar also (po, i2) ∈ Fvar . Because (o1, po) 6∈ Fvar also (po, o2) 6∈ Fvar . This assumption
is reasonable when looking at an object-centric event log. Per event e and object type ot , πomap(e)(ot)
is given. Therefore, it makes no sense to consider different sets of objects of the same type ot per
transition t. In the remainder, we limit ourselves to well-formed object-centric Petri nets (without
explicitly stating this).

A token denoted by (p, oi) resides in place p and refers to object oi . A marking is a multiset of
such tokens. In the marking [(p1, 666), (p2, 666), (p2, 555), (p3, 555)] there are four tokens (place p2
has two tokens referring to objects 555 and 666).

Definition 5.3. (Marking)
Let ON = (N, pt , Fvar) be an object-centric Petri net with N = (P, T, F, l). QON = {(p, oi) ∈
P × Uoi | type(oi) = pt(p)} is the set of possible tokens. A marking M of ON is a multiset of
tokens, i.e., M ∈ B(QON).

To describe the semantics of an object-centric Petri net, we use the notion of bindings, similar to
the notion of bindings in colored Petri nets. However, now the binding refers to the object references

4Terms similar to “object Petri nets” were already used by Rüdiger Valk, Charles Lakos, Jinzhong Niu, Li-Chi Wang, Daniel
Moldt, and others. Note that our nets are different and some overloading of terminology is unavoidable.

18 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

of the corresponding event in the event log. A binding (t, b) refers to a transition t and a function b
that maps a subset of object types to sets of object identifiers. The subset of object types corresponds
to the object types of the surrounding places (i.e., tpl(t)). Moreover, for non-variable arcs the binding
should select precisely one object (i.e., |b(ot)| = 1 for ot ∈ tplnv (t)). Consider transition t and one
of its input place p (i.e., p ∈ •t). If t fires with binding (t, b), then pt(p) ∈ dom(b) and the objects
b(pt(p)) are removed from input place p. If p is an output place of t (p ∈ t•), then the objects b(pt(p))
are added to output place p. Therefore, binding (t, b) fully determines the new marking.

Definition 5.4. (Binding Execution)
Let ON = (N, pt , Fvar) be an object-centric Petri net with N = (P, T, F, l). B = {(t, b) ∈ T ×
Uomap | dom(b) = tpl(t) ∧ ∀ot∈tplnv (t)

|b(ot)| = 1} is the set of all possible bindings. (t, b) ∈ B
is a binding and corresponds to the execution of transition t consuming selected objects from the
input places and producing the corresponding objects for the output places (both specified by b).
cons(t, b) = [(p, oi) ∈ QON | p ∈ •t ∧ oi ∈ b(pt(p))] is the multiset of tokens to be consumed
given binding (t, b). prod(t, b) = [(p, oi) ∈ QON | p ∈ t • ∧ oi ∈ b(pt(p))] is the multiset of
tokens to be produced given binding (t, b). Binding (t, b) is enabled in marking M ∈ B(QON) if
cons(t, b) ≤M . The occurrence of an enabled binding (t, b) in marking M leads to the new marking

M ′ =M − cons(t, b) + prod(t, b).5 This is denoted as M
(t,b)−→M ′.

M
(t,b)−→ M ′ implies that binding (t, b) is enabled in marking M and that the occurrence of this

binding leads to the new marking M ′. It is also possible to have a sequence of enabled bindings

σ = 〈(t1, b1), (t2, b2), . . . , (tn, bn)〉 ∈ B∗ such that M0
(t1,b1)−→ M1

(t2,b2)−→ M2
(t3,b3)−→ . . .

(tn,bn)−→ Mn,
i.e., it is possible to reach Mn from M0 in n steps. This is denoted M σ−→ M ′. It is also possible to
map the transition names onto the corresponding activity names using l leading to the so-called visible
binding sequence σv = 〈(l(t1), b1), (l(t2), b2), . . . , (l(tn), bn)〉 (where (l(ti), bi) is omitted if ti has
no label). Note that the visible binding sequence does not show silent steps (transitions with no label)
and cannot distinguish duplicate activities (two transitions with the same label).

It should be noted that Definition 5.4 does not put any constraints on the binding other than that for
non-variable arcs precisely one token is consumed/produced. In the colored Petri in Figure 7 there are
four transitions with guards to link items to specific orders and routes. This is deliberately abstracted
from in Definition 5.1 to enable the discovery of so-called accepting object-centric Petri nets with an
initial and final marking.

Definition 5.5. (Accepting Object-Centric Petri Net)
An accepting object-centric Petri net is a tuple AN = (ON ,Minit ,Mfinal) composed of a well-formed
object-centric Petri net ON = (N, pt , Fvar), an initial markingMinit ∈ B(QON), and a final marking
Mfinal ∈ B(QON).

Using the notion of a visible binding sequence, we can reason about all behaviors leading from
the initial to the final marking.

5Summation (+), difference (−), and inclusion (≤) are defined for multisets in the usual way, e.g., [a, b]+ [b, c] = [a, b2, c],
[a, b2, c]− [b, c] = [a, b], and [a, b] ≤ [a, b2, c].

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 19

Definition 5.6. (Language of an Object-Centric Petri Net)
An accepting object-centric Petri net AN = (ON ,Minit ,Mfinal) defines a language φ(AN) = {σv |
Minit

σ−→ Mfinal} that is composed of all visible binding sequences starting in Minit and ending in
Mfinal .

Note that the behavior of an accepting object-centric Petri net is deliberately “underspecified”.
There are only typing and cardinality constraints. Hence, objects of different types are unrelated.
Compared to the colored Petri net in Figure 7, our process models do not use guards to relate objects
of different types. Note that guards combine objects of different types that are only characterized by
an identifier. Using just the identifiers would lead to overfitting models. How to find a rule telling
that order 99001 is composed of items 88124, 88125, and 88126? This is contained in the data and
cannot be handled by a precise and explicit rule. As mentioned in the conclusion, this a topic for future
research (cf. Section 10).

6. Discovering object-centric Petri nets

First, we introduce a general approach to learn accepting object-centric Petri nets from object-centric
event logs. Then we discuss performance-related annotations of the models, model views, and ways
to combine these results with traditional process mining techniques.

6.1. Generic approach

Given an object-centric event log L = (E,�E) (Definition 3.3), we would like to discover an ac-
cepting object-centric Petri net AN = (ON ,Minit ,Mfinal) (Definition 5.5). Rather than defining
one specific discovery algorithm, we present a general approach leveraging existing process discovery
techniques.

• Step 1: Given an object-centric event log L = (E,�E), identify the object types OT ⊆ Uot

appearing in the event log. Then create a flattened event log Lot = (Eot ,�ot
E) for each object

type ot ∈ OT .

• Step 2: Discover an accepting Petri net SN ot = (Not ,Mot
init ,M

ot
final) with Not = (P ot , T ot ,

F ot , lot) for each object type ot ∈ OT using the flattened event log Lot . For this purpose,
any conventional discovery technique can be used. The only assumption we need to make is
that there are no duplicated labels, i.e., labeling function lot is injective. However, we allow for
silent transitions, i.e., lot may be partial.

• Step 3: Merge the accepting Petri nets into a Petri net N . To avoid name clashes, first en-
sure that the place names and names of silent transitions in the different nets are different.
Also, ensure that transitions that have the same label also have the same name (this is possible
because the labeling functions are injective). After renaming, create an overall labeled Petri
net N = (P, T, F, l) with: P =

⋃
ot∈OT P ot , T =

⋃
ot∈OT T ot , F =

⋃
ot∈OT F ot , and

l =
⋃

ot∈OT lot .

20 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

• Step 4: Assign object types to the places in the merged Petri net N : pt(p) = ot for p ∈ P ot

and ot ∈ OT . This is possible because the places for the different object types are disjoint.

• Step 5: Identify the variable arcs Fvar ⊆ F . This can be determined in different ways (e.g.,
using replay results or diagnosing the flattening process). The goal is to identify the arcs where
multiple tokens need to be consumed or produced. An example would be Fvar = {(p, t) ∈
F ∩ (P × T) | score(l(t), pt(p)) < τ} ∪ {(t, p) ∈ F ∩ (T × P) | score(l(t), pt(p)) < τ}
where τ is a threshold (e.g., 0.98) and score ∈ (Uact×Uot) 6→ [0, 1] such that score(act , ot) =
|{e ∈ E | πact(e) = act ∧ |πomap(e)(ot)| = 1}| / |{e ∈ E | πact(e) = act}| is the fraction of
act events that refer to precisely one object of type ot .

• Step 6: Combining the previous three steps allows us to create an object-centric Petri net
ON = (N, pt , Fvar). The initial and final markings are obtained by replicating the markings
of the accepting Petri nets for each of the corresponding objects. Minit = [(p, oi) ∈ QON |
∃ot∈OT p ∈ Mot

init ∧ ∃e∈E oi ∈ πomap(e)(pt(p))]. Mfinal = [(p, oi) ∈ QON | ∃ot∈OT p ∈
Mot

final ∧ ∃e∈E oi ∈ πomap(e)(pt(p))].

• Step 7: Return the accepting object-centric Petri net AN = (ON ,Minit ,Mfinal).

The above approach has two parameters: (1) the discovery technique used in Step 2 and (2) the
selection of variable arcs in Step 5 (e.g., threshold τ and function score). For Step 2 any discovery
technique that produces a Petri net without duplicate labels can be used (e.g., region-based techniques
without label splitting or the inductive mining techniques). The scoring function described in Step 5
is just an example. Function score(act , ot) counts the fraction of act events that refer to precisely
one object of type ot . If this is rather low (below the threshold τ), then the corresponding arcs are
considered to be variable (i.e., these arcs can consume/produce any number of tokens). The approach
always returns a well-formed object-centric Petri net because the selection of Fvar depends on the
transition and place type only.

6.2. Annotations, views, and extractions

The main novelty of the work presented in this paper is that we discover a single process model with
multiple object types allowing us to capture multiple one-to-many and many-to-many relationships in
event data. Based on this, many ideas from traditional process mining can be converted to this more
realistic setting. In this section, we briefly discuss a few.

It is rather straightforward to annotate process models with frequency information and time infor-
mation. For example, the right-hand side of Figure 6 is already showing various frequencies and our
implementation provides much more diagnostics.

• Transition annotations: The frequency of a transition shows how often the corresponding ac-
tivity occurred in the object-centric event log. It is also possible to add statistics about the
objects involved in the corresponding events (e.g., how many objects of a particular type were
involved on average). If there is transactional information (start and complete), it is also pos-
sible to show information about the duration of the corresponding activity (average, median,
variance, minimum, maximum, etc.).

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 21

• Place annotations: It is possible to show how many tokens have been consumed from and
produced for each place. These tokens correspond to objects. Hence, it is also possible to show
how many unique objects visited the place and what the average number of visits per object
is. By taking the time difference between the moment a token is produced and consumed,
it is possible to show timing information (average, median, variance, minimum, maximum,
etc.). In case of compliance checking, one can also show missing and remaining tokens (see
implementation).

• Arc annotations: There are two types of arcs: the variable arcs Fvar and the non-variable
F \Fvar . Both can be annotated with frequency and time information. For variable arcs, we can
also show statistics about the numbers of tokens produced/consumed per transition occurrence.
See Figure 6, where the annotations for variable arcs show averages. For example, annotation
100× 5 shows that 100 times a multiset of tokens was moved along the arc and the average size
of this multiset was 5, indicating that 500 objects were moved along the arc.

Next to adding annotations, it is also possible to select or deselect object types. The approach de-
scribed in Section 6.1 first identifies the object types OT ⊆ Uot appearing in the event log. However,
we can take any nonempty subset OT ′ ⊆ OT . It is, for example, possible to leave out the object type
Order and only use the types Item and Route. This way it is possible to create simplified views. Every-
thing can also be combined with frequency-based filtering, i.e., adding sliders to seamlessly remove
infrequent activities and arcs.

Since most process mining techniques cannot handle object-centric event logs, it is valuable to be
able to generate classical event logs and apply traditional techniques. The holistic view provided by
the accepting object-centric Petri net serves as a starting point for a more detailed analysis focusing on
one object type. Definition 4.1 already showed that it is easy to flatten event logs. It is also possible to
take as case identifier combinations of object types. This can be combined with views and interactive
filtering. Of course, one should always be very careful when interpreting such results. Due to the
convergence and divergence problems mentioned before the results may be misleading. However, the
overall accepting object-centric Petri net helps to avoid misinterpretations.

7. Tool support for object-centric Petri nets

The concepts and techniques discussed have been fully implemented. In this section, we describe the
implementation, the functionalities supported, and evaluate the performance.

7.1. Implementation

To support the discovery approach presented in this paper (including performance and conformance
analysis using token-based replay), we extended PM4Py with an additional Python library PM4Py-
MDL.6 The tool can be installed by using the Python Package Installer (PIP) (use the command pip
install pm4pymdl). Next to discovering object-centric Petri nets, PM4Py-MDL can also discover multi-
dimensional directly-follows graphs [39, 40].
6The software can be downloaded from www.pm4py.org and https://github.com/Javert899/pm4py-mdl.git

22 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

Our implementation follows the approach described in this paper. The discovery of an object-
centric Petri net is based on the discovery of Petri nets for the single object types. Then, these Petri
nets are merged and annotated. For the discovery of a Petri net for each of the individual object types,
a sound workflow net is obtained by applying the Inductive Miner Directly-Follows process discovery
algorithm [41]. However, any discovery technique producing an accepting Petri net can be used.

The token-based replay approach described in [42] is used to annotate the places and the perfor-
mance on the arcs. This approach improves the approach [43] and the implementation is considerably
faster. For each place, the number of produced p, consumed c, remaining r, and missing m tokens are
computed and displayed. These values are obtained by “playing the token game” using the flattened
event log Lot and accepting Petri net SN ot for each object type ot . This is possible because each
place has precisely one type. The numbers p and c refer to the number of produced and consumed
tokens (reported per place). The number of missing tokens m refers to situations where a token is not
present in the place although the log suggests that the output transition has fired. The number of re-
maining tokens r refers to the tokens that remain after replaying the event log. Our token-based replay
approach is able to deal with silent transitions and duplicate transitions (i.e., the labeling function l is
partial or non-injective). See [43, 42] for details.

For performance-related annotations, the sets of delays based on differences between the produc-
tion times of tokens and the consumption times of tokens are used. Based on these measurements,
minimum, maximum, average, variance, etc. can be calculated.

The annotations related to the transitions are derived directly from the event log (i.e., without
replaying the event log). This way we can add the frequencies of transitions, the average number of
objects involved, and the number of unique objects to the model.

7.2. Functionalities of the tool

Figure 8 shows two screenshots of our PM4Py-MDL tool. The following functions are supported:

• Importing and exporting of object-centric event logs in different formats. The currently sup-
ported formats are Multi-Dimensional Logs (MDL), Parquet and XOC (format connected to
OCBC models).

• A range of object-centric process discovery approaches are supported. There are also several
target formats next to the object-centric Petri nets introduced in this paper. Also Multiple View-
Point (MVP) models are supported. These are essentially Directly Follows Graphs [23] with
colored arcs, see [39, 40]. The approach presented in the paper can be combined with different
low-level discovery techniques. In the examples, we use the Inductive Miner Directly-Follows
process discovery algorithm [41].

• It is possible to set various thresholds to influence the discovery process, e.g., the minimal
number of occurrences for activities and paths. It is also possible to specify, for each object
type, the activities that are considered for that type.

• Several methods to explore the raw event data are provided (e.g., statistics on the number of
related objects per type and distribution of events over time). These annotations can be attached
to places, transitions, and arcs.

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 23

Figure 8. Web interface that is supporting the functionalities offered by the PM4Py-MDL library. The main
components are the process discovery (left) and event exploration (right) ones.

• Token-based replay is supported for performance and conformance analysis. This allows for the
identification of bottlenecks and deviating behavior.

• It is possible to filter based on activities, paths, number of related objects per type. Also, time-
frame and attribute-based filters are supported.

• There is support for clustering and event correlation based on event graphs.

• At any point in time, it is possible to flatten an object-centric event log onto a traditional event
log by selecting an object type. The resulting event log can be analyzed using conventional
process mining techniques.

The web interface is organized mainly in two different components: process discovery and event
exploration (see Figure 8). The visualization is highly interactive. The nodes are clickable in such a
way that the statistics about the events of such activity can be inspected and filtering options can be
set. The event exploration shows the events of the log in an interactive way. It is possible to interact
with the related objects and show all the events related to an object in another panel. This way the
understanding the lifecycle of objects is facilitated. Next, we evaluate the scalability of the approach
and the implementation.

7.3. Scalability of the approach and implementation

The aim of this subsection is to analyze the scalability of the discovery of object-centric Petri nets as
implemented in the PM4Py-MDL tool. We expect the discovery of object-centric Petri nets to be scal-
able, because the steps that are involved have at most linear complexity, excluding the application of
the process discovery algorithm on the flattened logs. Moreover, we also support discovery techniques
that are linear in the event log (given a bounded number of activities).

To analyze scalability, we use variants of the “running-example” object-centric event log also used
in other parts of the paper. Three different settings have been examined:

1. The execution time of the algorithm in terms of the number of events in the event log (while
keeping the number of unique activities and the number of objects per event constant).

24 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

2. The execution time of the algorithm in terms of the number of unique activities in the event log
(while keeping the number of events and the number of objects per event constant).

3. The execution time of the algorithm in terms of the number of objects per event (while keeping
the number of unique activities and the number of events constant).

7.3.1. Increasing the number of events

Figures 9 and 10(a) show the relationship between the overall execution time and the number of events
in the object-centric event log. Figure 10(a) shows a linear relationship between the number of events
and the execution time. Our initial “running-example” log contains 22,367 events. Different subsets
of different sizes are taken such that the set of unique activities remains constant (we just consider
fewer orders). In other words, the process is observed over shorter time periods. Analyzing the whole
log takes less than a minute. This may seem long for a relatively small event log. However, the
time needed for discovery is less than a second. Figure 9 splits the analysis time into six different
components:

• The time needed for the log flattening operations for all event logs (Log Fl.).

• The time needed for the process discovery operations (Disc.). In these experiments, we use the
inductive miner.

0 0.5 1 1.5 2
·104

0

5

10

15

20

Number of events

E
xe

cu
tio

n
tim

e
(s

)

Log Fl. Disc. TR Perf. Stats Vis.

Figure 9. Detailed analysis of the overall execution time of the approach when increasing the number of events
of the log. The measurements are grouped for the five sublogs. The columns inside a group represent event log
flattening (Log Fl.), discovery (Disc.), token-based replay (TR), computing performance annotations (Perf.),
computing statistics (Stats), and visualization (Vis.).

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 25

• The time needed for the token-based replay operations (TR).

• The time needed for computing the performance annotations based on the results of the token-
based replay (Perf.).

• The time needed for the calculation of additional statistics from the log (Stats).

• The time needed for the visualization (Vis.).

Figure 9 clearly shows that most time is spent on the token-based replay operations (TR) and the
computation of the performance annotations (Perf.). The first is done per control-flow variant (to avoid
repeatedly solving the same problem) and the second one per object. This explains why Perf. takes
more time than TR. Also, the event log preprocessing (Log Fl.) takes substantial time. Interestingly,
the discovery itself is very fast compared to the other components.

Figures 9 and 10(a) show that the characteristics of our approach are similar to process mining on
classical event logs. It takes more time to replay the event log to collect conformance and performance
statistics than to discover the process model using techniques such as the inductive miner. This also
holds for traditional process mining techniques using a single case notion.

7.3.2. Increasing the number of activities

Figure 10(b) shows the execution time when increasing the number of unique activities. The event logs
used were created using activity filtering while keeping the number of events constant. Table 7.3.2
shows the number of activities, the number of events, and the overall time needed. In row k, the k
most frequent activities are retained and the event log is further filtered to have precisely 8159 events.
The growth in overall computation time is explained by the fact that the most expensive operations
are the token-based replay and computing the performance annotations, and the complexity of these
operations grows linearly with the average length of the trace.7

Table 3. The execution time while increasing the number of unique activities.

Number of Activities Number of events Execution time
1 8159 5.26
2 8159 6.74
3 8159 7.02
4 8159 9.25
5 8159 9.85
6 8159 10.34
7 8159 10.90
8 8159 12.18
9 8159 13.26
10 8159 13.56
11 8159 13.58

7Token-based replay, in contrast to other approaches such as alignments, does not suffer from the increase of the size of the
trace, since decisions are made locally.

26 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

0 0.5 1 1.5 2

·104

0

10

20

30

40

Number of events

E
xe

cu
tio

n
tim

e
(s

)

(a) Execution time while increasing the num-
ber of events.

0 2 4 6 8 10 12

6

8

10

12

14

Number of activities

E
xe

cu
tio

n
tim

e
(s

)
(b) Execution time while increasing the num-
ber of activities.

2 4 6 8 10

10

20

30

40

Objects per Event

E
xe

cu
tio

n
tim

e
(s

)

c) Execution time while increasing the num-
ber of objects per event.

Figure 10. Scalability assessment of the object-centric Petri nets discovery algorithm. The different graphs
show the overall time (including replay and annotation) when varying of the number of events, the number of
activities, and the number of objects per event.

7.3.3. Increasing the number of related objects per event

Figure 10(c) shows the execution time when the number of related objects per event is increased. To
analyze such a setting, different subsets of the “running-example” event log were created in such a way
that the number of events and the number of different activities does not change. The set of related
objects is selected such that at least one related object (of any type) remains for each event. The linear
relation is as expected, since events are replicated for each object during analysis. Experiments also
confirm that there is a linear relationship between the overall analysis time and the number of object
types (not shown).

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 27

Overall, the results are very encouraging. The approach scales linear in the number of events, the
number of unique activities, and the number of objects. The discovery times are negligible compared
to the time needed for conformance checking and performance analysis. Hence, the approach can be
applied to real-world event data.

Table 4. Fragment of a larger object-centric event log with 22,367 events and five object types: orders, items,
products, customers, packages. There are 2000 different orders, 8159 items, 20 products, 17 customers, and
1325 packages. The table shows a few sample events and the first three object types.

event activity event timestamp orders items products

place order 2019-05-20 09:07:47 [’990001’] [’880001’, ’880002’, ’880003’, ’880004’] [’Echo Show 8’, ’Fire Stick 4K’, ’Echo’, ’Echo...
place order 2019-05-20 10:35:21 [’990002’] [’880005’, ’880006’, ’880007’, ’880008’] [’iPad’, ’Kindle’, ’iPad Air’, ’MacBook Air’]
pick item 2019-05-20 10:38:17 [’990002’] [’880006’] [’Kindle’]
confirm order 2019-05-20 11:13:54 [’990001’] [’880001’, ’880002’, ’880003’, ’880004’] [’Echo Show 8’, ’Fire Stick 4K’, ’Echo’, ’Echo...
pick item 2019-05-20 11:20:13 [’990001’] [’880002’] [’Fire Stick 4K’]
place order 2019-05-20 12:30:30 [’990003’] [’880009’, ’880010’, ’880011’, ’880012’] [’iPad Air’, ’iPhone 11’, ’Fire Stick’, ’iPhon...
confirm order 2019-05-20 12:34:16 [’990003’] [’880009’, ’880010’, ’880011’, ’880012’] [’iPad Air’, ’iPhone 11’, ’Fire Stick’, ’iPhon...
item out of stock 2019-05-20 13:54:37 [’990001’] [’880004’] [’Echo Studio’]
place order 2019-05-20 14:20:47 [’990004’] [’880013’, ’880014’] [’Echo Studio’, ’Echo Show 8’]
item out of stock 2019-05-20 15:19:49 [’990003’] [’880009’] [’iPad Air’]
place order 2019-05-20 16:01:22 [’990005’] [’880015’, ’880016’] [’iPad Pro’, ’iPad Air’]
pick item 2019-05-20 16:56:02 [’990004’] [’880014’] [’Echo Show 8’]
pick item 2019-05-20 17:08:25 [’990002’] [’880008’] [’MacBook Air’]
place order 2019-05-20 17:22:31 [’990006’] [’880017’, ’880018’, ’880019’] [’Echo Show 8’, ’Fire Stick 4K’, ’iPhone X’]
pick item 2019-05-20 17:51:15 [’990003’] [’880011’] [’Fire Stick’]
pick item 2019-05-20 18:15:00 [’990002’] [’880007’] [’iPad Air’]
confirm order 2019-05-20 18:36:37 [’990004’] [’880013’, ’880014’] [’Echo Studio’, ’Echo Show 8’]
place order 2019-05-20 19:04:49 [’990007’] [’880020’, ’880021’, ’880022’] [’Echo Show 8’, ’Echo Dot’, ’Kindle Paperwhite’]
.

8. Example application

To illustrate the feasibility of the approach and corresponding PM4Py-MDL implementation, we use
the larger example briefly mentioned in the introduction (see Figure 1). The object-centric event
log in CSV format can be obtained from https://github.com/Javert899/pm4py-mdl/blob/

master/example_logs/mdl/mdl-running-example.mdl. A small fragment of the log, showing
three selected object types, is visualized in Table 4. It can be considered to be an extension of the
smaller examples used before. In total, there are 22,367 events. There are five object types: orders,
items, products, customers, packages. The event log contains information about 2000 different orders,
8159 items, 20 products, 17 customers, and 1325 packages. Hence, the average number of items in
one order is 4.08 and the average number of items in one package is 6.16.

We can filter out specific “activity - object type” (a, ot) combinations. This corresponds to re-
moving objects related to activity a and object type ot . In Table 4, we removed all objects related to
customers and packages for all activities. This boils down to removing the columns with customer
and package information. We can also remove the rows related to certain activities. However, we can
also use more fine-grained filtering where we keep specific “activity - object type” combinations.

28 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

Table 5. The first two columns show the “activity - object type” combinations used for analysis. For example,
place order events also had information about products and customers, but these object types were removed.
failed delivery events also had information about orders, products, and customers, but these were removed. Etc.
The last three columns show statistics for the “activity - object type” combinations in the original event log
(only for the object types orders, items, and packages). The three values are reported: the minimum number of
objects / the average number of objects / the maximum number of objects.

Activity Retained object types Orders per event Items per event Packages per event

place order orders, items 1 / 1.00 / 1 1 / 4.08 / 15 0 / 0.00 / 0
confirm order orders, items 1 / 1.00 / 1 1 / 4.08 / 15 0 / 0.00 / 0
item out of stock items 1 / 1.00 / 1 1 / 1.00 / 1 0 / 0.00 / 0
reorder item items 1 / 1.00 / 1 1 / 1.00 / 1 0 / 0.00 / 0
pick item items 0 / 0.00 / 0 1 / 1.00 / 1 0 / 0.00 / 0
payment reminder orders 1 / 1.00 / 1 1 / 4.18 / 14 0 / 0.00 / 0
pay order orders 1 / 1.00 / 1 1 / 4.08 / 15 0 / 0.00 / 0
create package items, packages 1 / 3.32 / 9 1 / 6.16 / 22 1 / 1.00 / 1
send package items, packages 1 / 3.32 / 9 1 / 6.16 / 22 1 / 1.00 / 1
failed delivery items, packages 1 / 3.21 / 8 1 / 5.95 / 18 1 / 1.00 / 1
package delivered items, packages 1 / 3.31 / 9 1 / 6.16 / 22 1 / 1.00 / 1

Table 5 shows example statistics for the 22,367 events in the original object-centric event log.
For each activity, the minimum number of objects, the average number of objects, and the maximum
number of objects of a given type are indicated. For example, place order events always refer to
precisely one order object and a variable number of item objects (minimum=1, average=4.08, maxi-
mum=15) and send package events always refer to precisely one package object, a variable number
of item objects (minimum=1, average=6.16, maximum=22), and a variable number of order objects
(minimum=1, average=3.32, maximum=9).

For our running example, we considered the “activity - object type” combinations depicted in
Table 5, i.e., we retain object types orders, items, and packages, keep all activities, but remove less
relevant object types for some of the activities. Starting from the event log in Table 4 and the “activity
- object type” combinations in Table 5, our discovery approach returns the object-centric Petri net
shown in Figure 11.

The overall figure is hardly readable. However, we can use the filtering approaches discussed and
seamlessly simplify the model (e.g., removing infrequent activities and selecting fewer object types).
Moreover, we can zoom in on the different aspects of the model.

Figure 12 shows a fragment of the larger object-centric Petri net in Figure 11. The green source
place is of type orders. The red source place is of type items. Activity place order occurred 2000
times, consuming precisely one token from the green place and a variable number of tokens from the
red place. The compound double arrow reflects this, and the inscription shows that on average 4.08
item objects were consumed.

Figure 13 shows another fragment. The package delivered activity is the final activity of the life-
cycle of both packages and items. The two compound double arrows denote that variable numbers of
item objects are consumed and produced. The mean number of item objects consumed and produced
by package delivered is 6.16. The annotations on the arcs tell that the average time from the previous
activity for packages to this activity is 18 hours. The average time from the previous activity for items
to this activity is 9 hours.

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 29

Figure 11. Object-centric Petri net discovered based on the example log considering three object types: orders
(green), items (red), and packages (violet).

30 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

Figure 12. Fragment of the model showing the place order activity. There are 2000 unique orders in the log
and place order occurs for each of them once. There are 8159 unique items distributed over the 2000 orders.
The diagnostics show that, on average, 4.08 item objects are consumed from the red place of type items.

Figure 13. Fragment of the model showing the package delivered activity. This activity corresponds to the
successful delivery of packages composed of multiple items. There are 8159 unique items distributed over 1325
packages. All packages were delivered as reflected by the frequency of package delivered. The mean number
of item objects consumed and produced by the transition is 6.16. The number of package objects consumed and
produced by the transition is always 1. Also, the average times are reported.

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 31

Figure 14. Fragment of the model showing the failed delivery activity. There were 391 failed deliveries, 261
packages had at least one failed delivery, and 1565 items out of the 8159 where involved in at least one failed
delivery. 87 packages containing 543 items had a failed delivery two or more times.

Figure 14 zooms in on the failed deliveries. There were 391 failed deliveries involving 261 pack-
ages (87 failed multiple times) and 1565 items.

32 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

All the places in Figure 11 also show replay information: p is the number of tokens produced for
the place, c is the number of tokens consumed, m is the number of tokens missing, r is the number of
tokens remaining (see Section 7.1). In this example, the model fits perfectly. Therefore, m = 0 and
r = 0 for all places.

From the discovered object-centric Petri net, we can also generate simpler views, create tradi-
tional event logs, and deploy traditional process mining techniques for further analysis. Moreover,
the example shows many insights that could not have been discovered using traditional approaches.
By flattening the event log, the relations between different types of objects would be lost. Moreover,
any attempt to look at different types of objects would result in non-existing loops and misleading
frequency/time diagnostics.

This section highlighted the main advantages of using our approach over traditional models using
a separate process model for each object type. To summarize:

• Figure 11 (and the corresponding model fragments) provides an overview of the whole process
and the interactions between the different object types. When considering each object type as a
separate case notion, we get multiple disconnected models that do not show these interactions.

• Deficiency, convergence, and divergence problems are avoided (cf. Definition 4.3). All events
are taken into count precisely once, i.e., events do not disappear and are not replicated uninten-
tionally. Moreover, artificial loops due to divergence are avoided.

• Using token-based replay, we are able to project performance and conformance information
onto one overall model. Most of the statistics would not be visible in the flattened process
models (e.g., the average number of objects involved in an activity).

9. Related work

This section discusses traditional process mining techniques using a single case notion, modeling
approaches dealing with multiple object types, and process mining approaches dealing with multiple
object types.

9.1. Traditional process mining techniques using a single case notion

In the introduction, we mentioned several process discovery approaches based on classical event logs
using a single case notion [34]. Many of these techniques discover classical Petri nets (e.g., place
transition nets), e.g., region-based approaches can be used to derive places [2, 3, 11, 13, 15, 20, 8, 7, 6,
10, 14, 9, 5, 12, 19, 17, 16, 21, 22]. The region-based process discovery techniques are just a subset of
all approaches to derive process models from event logs. The inductive mining techniques [24, 25] and
the so-called split miner [26] are examples of the state-of-the-art techniques to learn process models.
Commercial systems tend to use the Directly Follows Graph (DFG) having the obvious limitations
explained in [23]. All of the above approaches assume a single case notion. This is consistent with
traditional process models ranging from workflow nets [44, 45] and process trees [46] to Business
Process Modeling Notation (BPMN) models [47] and Event-driven Process Chains (EPCs) [48] which
assume a single case notion.

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 33

9.2. Modeling techniques using multiple object types

Although most process models use a single case notion, the problem that many processes cannot be
captured properly in this way was identified early on. IBM’s FlowMark system already supported the
so-called “bundle” concept to handle cases composed of subcases [49]. This is related to the multiple
instance patterns, i.e., a category of workflow patterns identified around the turn of the century [50].
One of the first process modeling notations trying to address the problem were the so-called proclets
[51, 52]. Proclets are lightweight interacting workflow processes. By promoting interactions to first-
class citizens, it is possible to model complex workflows in a more natural manner using proclets.

This was followed by other approaches such as the artifact-centric modeling notations [53, 54, 55,
56]. See [57] for an up-to-date overview of the challenges that arise when instances of processes may
interact with each other in a one-to-many or many-to-many fashion.

9.3. Process mining techniques using multiple object types

Most of the work done on interacting processes with converging and diverging instances has focused
on developing novel modeling notations and supporting the implementation of such processes. Only
a few approaches focused on the problem in a process mining context. This is surprising since one
quickly encounters the problem when applying process mining to ERP systems from SAP, Oracle,
Microsoft, and other vendors of enterprise software. This problem was also raised in Section 5.5 of
[34] which discusses the need to “flatten” event data to produce traditional process models.

In [58] techniques are described to extract “non-flat” event data from source systems and prepare
these for traditional process mining. The eXtensible Event Stream (XES) format [35] is the official
IEEE standard for storing event data and supported by many process mining vendors. XES requires a
case notion to correlate events. Next to the standard IEEE XES format [35], new storage formats such
as eXtensible Object-Centric (XOC) [59] have been proposed to deal with object-centric data (e.g.,
database tables) having one-to-many and many-to-many relations. The XOC format does not require
a case notion to avoid flattening multi-dimensional data. An XOC log can precisely store the evolution
of the database along with corresponding events. An obvious drawback is that XOC logs tend to be
very large.

The approaches described in [31, 32, 33] focus on interacting processes where each process uses its
own case identifiers. In [33] interacting artifacts are discovered from ERP systems. In [31] traditional
conformance checking was adapted to check compliance for interacting artifacts.

One of the main challenges is that artifact models tend to become complex and difficult to un-
derstand. In an attempt to tackle this problem, Van Eck et al. use a simpler setting with multiple
perspectives, each modeled by a simple transition system [29, 30]. These are also called artifact-
centric process models but are simpler than the models used in [53, 54, 31, 32, 55, 56, 33]. The state
of a case is decomposed onto one state per perspective, thus simplifying the overall model. Relations
between sub-states are viewed as correlations rather than explicit causality constraints. Concurrency
only exists between the different perspectives and not within an individual perspective. In a recent
extension, each perspective can be instantiated multiple times, i.e., many-to-many relations between
artifact types can be visualized [30].

34 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

The above techniques have the drawback that the overall process is not visualized in a single di-
agram, but shown as a collection of interconnected diagrams using different (sub-)case notions. The
so-called Object-Centric Behavioral Constraint (OCBC) models address this problem and also incor-
porate the data perspective in a single diagram [60, 61, 62, 28]. OCBC models extend data models
with a behavioral perspective. Data models can easily deal with many-to-many and one-to-many rela-
tionships. This is exploited to create process models that can also model complex interactions between
different types of instances. Classical multiple-instance problems are circumvented by using the data
model for event correlation. Activities are related to the data perspective and have ordering constraints
inspired by declarative languages like Declare [63]. Instead of LTL-based constraints, simpler cardi-
nality constraints are used. Several discovery techniques have been developed for OCBC models [28].
It is also possible to check conformance and project performance information on such models. OCBC
models are appealing because they faithfully describe the relationship between behavior and data and
are able to capture all information in a single integrated diagram. However, OCBC models tend to
be too complex and the corresponding discovery and conformance checking techniques are not very
scalable.

The complexity and scalability problems of OCBC models led to the development of the so-
called Multiple ViewPoint (MVP) models, earlier named StarStar models [39, 40]. MVP models are
learned from data stored in relational databases. Based on the relations and timestamps in a traditional
database, first, a so-called E2O graph is built that relates events and objects. Based on the E2O graph,
an E2E multigraph is learned that relates events through objects. Finally, an A2A multigraph is learned
to relate activities. The A2A graph shows relations between activities and each relation is based on
one of the object classes used as input. This is a very promising approach because it is simple and
scalable. The approach to discover object-centric Petri nets can be seen as a continuation of the work
in [39, 40].

Although commercial vendors have recognized the problems related to convergence and diver-
gence of event data, there is no real support for concepts comparable to artifact-centric models, Object-
Centric Behavioral Constraint (OCBC) models, and Multiple ViewPoint (MVP) models. Yet, there are
a few initial attempts implemented in commercial systems. An example is Celonis, which supports
the use of a secondary case identifier to avoid “Spaghetti-like” models where concurrency between
sub-instances is translated into loops. The directly-follows graphs in Celonis do not consider inter-
actions between sub-instances, thus producing simpler models. Another example is the multi-level
discovery technique supported by myInvenio. The resulting models can be seen as simplified MVP
models where different activities may correspond to different case notions (but one case notion per
activity). The problem of this approach is that, in reality, the same event may refer to multiple case
notions and choosing one is often misleading, especially since it influences the frequencies shown in
the diagram.

In spite of the recent progress in process mining, problems related to multiple interacting process
instances have not been solved adequately. One of the problems is the lack of standardized event data
that goes beyond the “flattened” event data found in XES. Hence, process mining competitions tend
to focus on classical event logs. In earlier papers [27, 39, 40], we already stressed the need for object-
centric process mining. In this paper, we provided a concrete, but at the same time generic, discovery
approach to learning object-centric Petri nets from object-centric events logs.

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 35

10. Conclusion

When looking at data models or database schemas, there are often one-to-many and many-to-many
relations between different types of objects relevant for a process. Since mainstream process modeling
and process mining approaches enforce the use of a specific case notion, the modeler or analyst is
forced to select a specific perspective. This problem can be partly addressed by extracting multiple
event logs to cover the different case notions and considering one model per case notion. It would be
better to have one, more holistic, process model that is showing the interactions between the different
types of objects. Moreover, the need to pick one or more specific case notions for analysis leads to the
divergence and convergence problems discussed in this paper.

Therefore, this paper uses object-centric event logs as a representation in between the actual data
in the information system and traditional event logs (e.g., based on XES). Object-centric event logs do
not depend on a case notion. Instead, events may refer to arbitrary sets of objects. One event may refer
to multiple objects of different types. Next to using a different input format, we also use a different
target language: object-centric Petri nets. These nets are a restricted variant of colored Petri nets
where places are typed, tokens refer to objects, and transitions correspond to activities. Unlike other
mainstream notations, a transition can consume and produce a variable number of objects of different
types. We presented a concrete, but also generic, approach to discover object-centric Petri nets from
object-centric event logs. The approach has been implemented in PM4Py and various applications
show that the approach provides novel insights and is highly scalable (linear in the number of objects,
object types, events, and activities). Therefore, the ideas are directly implementable in commercial
tools and the existing software can be used to analyze real-life event data in larger organizations.

This is the first paper that aims to learn object-centric Petri nets from object-centric event logs.
Our findings show lots of opportunities for further research. These include:

• We aim to develop conformance checking techniques based on object-centric Petri nets and
object-centric event logs. Next to checking whether the event log can be replayed on the process
model, it is interesting to detect outliers using the cardinalities. In the current implementation,
we already report missing and remaining tokens, but these are based on the flattened event logs.

• The approach presented is generic and can embed different process discovery algorithms inde-
pendently working on flattened events logs (inductive miner, region-based techniques, etc.). The
results are then folded into object-centric Petri nets. It is interesting to compare the different
approaches and develop more integrated approaches (e.g., first discover a process model for one
object type and then iteratively add the other object types). Moreover, it would be good to have
dedicated quality measures (e.g., complexity and precision).

• Object-centric Petri nets in their current form can be seen as “over-approximations” of the actual
behavior. It is interesting to think of ways to make the model more precise (e.g., automatically
detecting guards or relating splits and joins). For example, in Figure 4, transition marked as
complete should join the same set of objects earlier involved in an occurrence of transition place
order. Similarly, we would like to add stochastics to the model (e.g., a probability distribution
for the number of items in an order).

36 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

• The current object-centric event logs only contain object identifiers and no properties of objects.
If an object identifier refers to a patient or customer, we do not know her age, weight, address,
income, etc. If an object identifier refers to an order or machine, we do not know its value,
The absence of object attributes automatically leads to the “over-approximations” mentioned.
Hence, we are developing extended object-centric event logs.

• We also plan to investigate more sophisticated forms of performance analysis that go beyond
adding timing a frequency diagnostics to transition, places, and arcs. How do the different object
types influence each other? Next to analyzing the interactions between objects, we would like
to better support the link to CPN Tools for “what if” analysis (e.g., replaying the event log on
an improved process).

• We also aim to create a comprehensive, publicly available, set of object-centric event logs.

Acknowledgments: We thank the Alexander von Humboldt (AvH) Stiftung for supporting our re-
search.

References
[1] Ehrenfeucht A, Rozenberg G. Partial (Set) 2-Structures - Part 1 and Part 2. Acta Informatica, 1989.

27(4):315–368. doi:10.1007/BF00264612.

[2] Badouel E, Bernardinello L, Darondeau P. Petri Net Synthesis. Texts in Theoretical Computer Science.
An EATCS Series. Springer-Verlag, Berlin, 2015. doi:10.5555/2851516.

[3] Badouel E, Darondeau P. Theory of Regions. In: Reisig W, Rozenberg G (eds.), Lectures on Petri Nets
I: Basic Models, volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998 pp.
529–586. doi:10.1007/3-540-65306-6 22.

[4] Desel J, Reisig W. The Synthesis Problem of Petri Nets. Acta Informatica, 1996. 33(4):297–315.
doi:10.1007/ s002360050046.

[5] Kleijn J, Koutny M, Pietkiewicz-Koutny M, Rozenberg G. Applying Regions. Theoretical Computer
Science, 2017. 658:205–215. doi:10.1016/j.tcs.2016.01.040.

[6] Cortadella J, Kishinevsky M, Lavagno L, Yakovlev A. Deriving Petri Nets from Finite Transition Systems.
IEEE Transactions on Computers, 1998. 47(8):859–882. doi:10.1109/12.707587.

[7] Carmona J, Cortadella J, Kishinevsky M, Kondratyev A, Lavagno L, Yakovlev A. A Symbolic Algorithm
for the Synthesis of Bounded Petri Nets. In: Applications and Theory of Petri Nets (Petri Nets 2008).
2008 pp. 92–111. doi:10.1007/978-3-540-68746-7 10.

[8] Carmona J, Cortadella J, Kishinevsky M. New Region-Based Algorithms for Deriving Bounded Petri
Nets. IEEE Transactions on Computers, 2010. 59(3):371–384. doi:10.1109/TC.2009.131.

[9] Kleijn J, Koutny M, Pietkiewicz-Koutny M. Regions of Petri nets with a/sync connections. Theoretical
Computer Science, 2012. 454:189–198. doi:10.1016/j.tcs.2012.04.016.

[10] Darondeau P. On the Synthesis of Zero-Safe Nets. In: Concurrency, Graphs and Models, volume 5065 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2008 pp. 364–378. doi:10.1007/978-3-540-
68679-8 25.

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 37

[11] Bergenthum R, Desel J, Lorenz R, Mauser S. Process Mining Based on Regions of Languages. In:
Alonso G, Dadam P, Rosemann M (eds.), International Conference on Business Process Management
(BPM 2007), volume 4714 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2007 pp. 375–
383. doi:10.1007/978-3-540-75183-0 27.

[12] Lorenz R, Bergenthum R, Desel J, Mauser S. Synthesis of Petri Nets from Finite Partial Languages. In:
Basten T, Juhás G, Shukla S (eds.), International Conference on Application of Concurrency to System
Design (ACSD 2007). IEEE Computer Society, 2007 pp. 157–166. doi:10.1109/ACSD.2007.34.

[13] Bergenthum R, Desel J, Lorenz R, Mauser S. Synthesis of Petri Nets from Finite Partial Languages.
Fundamenta Informaticae, 2008. 88(4):437–468. doi:10.1109/ACSD.2007.34.

[14] van Dongen B, Desel J, van der Aalst WMP. Aggregating Causal Runs into Workflow Nets. In: Jensen
K, van der Aalst WMP, Marsan MA, Franceschinis G, Kleijn J, Kristensen L (eds.), Transactions on Petri
Nets and Other Models of Concurrency (ToPNoC VI), volume 7400 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2012 pp. 334–363. doi:10.1007/978-3-642-35179-2 14.

[15] Bergenthum R, Desel J, Mauser S, Lorenz R. Synthesis of Petri Nets from Term Based Representations of
Infinite Partial Languages. Fundamenta Informaticae, 2009. 95(1):187–217. doi:10.3233/FI-2009-147.

[16] Lorenz R, Juhás G. How to Synthesize Nets from Languages: A Survey. In: Henderson S, Biller B, Hsieh
M, Shortle J, Tew JD, Barton RR (eds.), Proceedings of the Wintersimulation Conference (WSC 2007).
IEEE Computer Society, 2007 pp. 637–647. doi:10.1109/WSC.2007.4419657.

[17] Lorenz R, Juhas G. Towards Synthesis of Petri Nets from Scenarios. In: Donatelli S, Thiagarajan P
(eds.), Application and Theory of Petri Nets 2006, volume 4024 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2006 pp. 302–321. doi:10.1007/11767589 17.

[18] Bergenthum R, Desel J, Lorenz R, Mauser S. Synthesis of Petri Nets from Scenarios with VipTool. In:
Applications and Theory of Petri Nets (Petri Nets 2008), volume 5062 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 2008 pp. 388–398. doi:10.1007/978-3-540-68746-7 25.

[19] Lorenz R, Desel J, Juhas G. Models from Scenarios. In: Jensen K, van der Aalst WMP, Balbo G, Koutny
M, Wolf K (eds.), Transactions on Petri Nets and Other Models of Concurrency (ToPNoC VII), volume
7480 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2013 pp. 314–371. 10.1007/978-3-
642-38143-0 9.

[20] Carmona J, Cortadella J, Kishinevsky M. A Region-Based Algorithm for Discovering Petri Nets from
Event Logs. In: Business Process Management (BPM 2008). 2008 pp. 358–373. doi:10.1007/978-3-540-
85758-7 26.

[21] Solé M, Carmona J. Process Mining from a Basis of State Regions. In: Lilius J, Penczek W (eds.),
Applications and Theory of Petri Nets 2010, volume 6128 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 2010 pp. 226–245. doi:10.1007/978-3-642-13675-7 14.

[22] van Zelst S, van Dongen B, van der Aalst WMP, Verbeek H. Discovering Workflow Nets Using Integer
Linear Programming. Computing, 2018. 100(5):529–556. doi:10.1007/s00607-017-0582-5.

[23] van der Aalst WMP. A Practitioner’s Guide to Process Mining: Limitations of the Directly-Follows Graph.
In: International Conference on Enterprise Information Systems (Centeris 2019), volume 164 of Procedia
Computer Science. Elsevier, 2019 pp. 321–328. doi:10.1016/j.procs.2019.12.189.

[24] Leemans S, Fahland D, van der Aalst WMP. Discovering Block-Structured Process Models from Event
Logs Containing Infrequent Behaviour. In: Lohmann N, Song M, Wohed P (eds.), Business Process Man-
agement Workshops, Int. Workshop on Business Process Intelligence (BPI 2013), vol. 171 of Lecture
Notes in Business Information Processing. Springer, 2014 pp. 66–78. doi:10.1007/978-3-319-06257-0 6.

38 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

[25] Leemans S, Fahland D, van der Aalst WMP. Scalable Process Discovery with Guarantees. In: Gaaloul K,
Schmidt R, Nurcan S, Guerreiro S, Ma Q (eds.), Enterprise, Business-Process and Information Systems
Modeling (BPMDS 2015), volume 214 of Lecture Notes in Business Information Processing. Springer-
Verlag, Berlin, 2015 pp. 85–101. doi:10.1007/978-3-319-19237-6 6.

[26] Augusto A, Conforti R, Marlon M, La Rosa M, Polyvyanyy A. Split Miner: Automated Discovery of
Accurate and Simple Business Process Models from Event Logs. Knowledge Information Systems, 2019.
59(2):251–284. doi:10.1007/s10115-018-1214-x.

[27] van der Aalst WMP. Object-Centric Process Mining: Dealing With Divergence and Convergence in Event
Data. In: Ölveczky P, Salaün G (eds.), Software Engineering and Formal Methods (SEFM 2019), volume
11724 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2019 pp. 3–25. doi:10.1007/978-
3-030-30446-1 1.

[28] Li G, Medeiros de Carvalho R, van der Aalst WMP. Automatic Discovery of Object-Centric Behav-
ioral Constraint Models. In: Abramowicz W (ed.), Business Information Systems (BIS 2017), vol-
ume 288 of Lecture Notes in Business Information Processing. Springer-Verlag, Berlin, 2017 pp. 43–58.
doi:10.1007/978-3-319-59336-4 4.

[29] van Eck M, Sidorova N, van der Aalst WMP. Guided Interaction Exploration in Artifact-centric Process
Models. In: IEEE Conference on Business Informatics (CBI 2017). IEEE Computer Society, 2017 pp.
109–118. doi:10.1109/CBI.2017.42.

[30] van Eck M, Sidorova N, van der Aalst WMP. Multi-instance Mining: Discovering Synchronisation in
Artifact-Centric Processes. In: Daniel F, Sheng Q, Motahari H (eds.), Business Process Management
Workshops, International Workshop on Business Process Intelligence (BPI 2018), volume 342 of Lecture
Notes in Business Information Processing. Springer-Verlag, Berlin, 2018 pp. 18–30. doi:10.1007/978-3-
030-11641-5 2.

[31] Fahland D, de Leoni M, van Dongen B, van der Aalst WMP. Behavioral Conformance of Artifact-Centric
Process Models. In: Abramowicz A (ed.), Business Information Systems (BIS 2011), volume 87 of Lecture
Notes in Business Information Processing. Springer-Verlag, Berlin, 2011 pp. 37–49. doi:10.1007/978-3-
642-21863-7 4.

[32] Fahland D, de Leoni M, van Dongen B, van der Aalst WMP. Many-to-Many: Some Observations on
Interactions in Artifact Choreographies. In: Eichhorn D, Koschmider A, Zhang H (eds.), Proceedings of
the 3rd Central-European Workshop on Services and their Composition (ZEUS 2011), CEUR Workshop
Proceedings. CEUR-WS.org, 2011 pp. 9–15. URL: http://ceur-ws.org/Vol-705/paper1.pdf.

[33] Lu X, Nagelkerke M, van de Wiel D, Fahland D. Discovering Interacting Artifacts from ERP Systems.
IEEE Transactions on Services Computing, 2015. 8(6):861–873. doi:10.1109/TSC.2015.2474358.

[34] van der Aalst WMP. Process Mining: Data Science in Action. 2016. doi:10.1007/978-3-662-49851-4 1.

[35] IEEE Task Force on Process Mining. XES Standard Definition. www.xes-standard.org, 2013.

[36] Lu X, Fahland D, van der Aalst WMP. Conformance Checking Based on Partially Ordered Event Data.
In: Fournier F, Mendling J (eds.), Business Process Management Workshops, International Workshop on
Business Process Intelligence (BPI 2014), volume 202 of Lecture Notes in Business Information Process-
ing. Springer-Verlag, Berlin, 2015 pp. 75–88. doi:10.1007/978-3-319-15895-2 7.

[37] van der Aalst WMP, Stahl C. Modeling Business Processes: A Petri Net Oriented Approach. MIT Press,
Cambridge, MA, 2011. ISBN: 978-0-262-01538-7.

[38] Jensen K, Kristensen L. Coloured Petri Nets. Springer-Verlag, Berlin, 2009. doi:10.1007/b95112.

W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets 39

[39] Berti A, van der Aalst WMP. StarStar Models: Using Events at Database Level for Process Analysis.
In: Ceravolo P, Keulen M, Lopez MG (eds.), International Symposium on Data-driven Process Discovery
and Analysis (SIMPDA 2018), volume 2270 of CEUR Workshop Proceedings. CEUR-WS.org, 2018 pp.
60–64. URL: http://ceur-ws.org/Vol-2270/short3.pdf.

[40] Berti A, van der Aalst WMP. Discovering Multiple Viewpoint Models from Relational Databases. In:
Ceravolo P, Keulen M, Lopez MG (eds.), Postproceedings International Symposium on Data-driven Pro-
cess Discovery and Analysis, volume 379 of Lecture Notes in Business Information Processing. Springer-
Verlag, Berlin, 2020 pp. 24–51. doi:10.1007/978-3-030-46633-6 2.

[41] Leemans S, Fahland D, van der Aalst WMP. Scalable Process Discovery and Conformance Check-
ing. Software and Systems Modeling, 2018. 17(2):599–631. doi:10.1007/s10270-016-0545-x.
doi:10.1007/s10270-016-0545-x.

[42] Berti A, van der Aalst WMP. Reviving Token-based Replay: Increasing Speed While Improving Diagnos-
tics. In: Proceedings of the International Workshop on Algorithms and Theories for the Analysis of Event
Data (ATAED 2019), volume 2371 of CEUR Workshop Proceedings. CEUR-WS.org, 2019 pp. 87–103.
URL: http://ceur-ws.org/Vol-2371/ATAED2019-87-103.pdf.

[43] Rozinat A, van der Aalst WMP. Conformance Checking of Processes Based on Monitoring Real Behavior.
Information Systems, 2008. 33(1):64–95. doi:10.1016/j.is.2007.07.001.

[44] van der Aalst WMP. The Application of Petri Nets to Workflow Management. The Journal of Circuits,
Systems and Computers, 1998. 8(1):21–66. doi:10.1142/S0218126698000043,

[45] van der Aalst WMP, Hee K, ter Hofstede A, Sidorova N, Verbeek H, Voorhoeve M, Wynn M. Sound-
ness of Workflow Nets: Classification, Decidability, and Analysis. Formal Aspects of Computing, 2011.
23(3):333–363. doi:10.1007/s00165-010-0161-4.

[46] Leemans S, Fahland D, van der Aalst WMP. Discovering Block-structured Process Models from Event
Logs: A Constructive Approach. In: Colom J, Desel J (eds.), Applications and Theory of Petri Nets
2013, volume 7927 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2013 pp. 311–329.
doi:10.1007/978-3-642-38697-8 17.

[47] OMG. Business Process Model and Notation (BPMN). Object Management Group, formal/2011-01-03,
2011. URL: https://www.omg.org/spec/BPMN/2.0/PDF.

[48] Scheer A. Business Process Engineering: Reference Models for Industrial Enterprises. Springer-Verlag,
Berlin, 1994. ISBN: 978-3-540-58234-2.

[49] IBM. IBM MQSeries Workflow - Getting Started With Buildtime. IBM Deutschland Entwicklung GmbH,
Boeblingen, Germany, 1999. URL: ftp://public.dhe.ibm.com/ps/products/workflow/docu/
v322/pdf/enu/fmcu0mst.pdf.

[50] van der Aalst WMP, ter Hofstede A, Kiepuszewski B, Barros A. Workflow Patterns. Distributed and
Parallel Databases, 2003. 14(1):5–51. doi:10.1023/A:1022883727209.

[51] van der Aalst WMP, Barthelmess P, Ellis C, Wainer J. Workflow Modeling using Proclets. In: Etzion
O, Scheuermann P (eds.), 7th International Conference on Cooperative Information Systems (CoopIS
2000), volume 1901 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2000 pp. 198–209.
doi:10.1007/10722620 20.

[52] van der Aalst WMP, Barthelmess P, Ellis C, Wainer J. Proclets: A Framework for Lightweight Interacting
Workflow Processes. International Journal of Cooperative Information Systems, 2001. 10(4):443–482.
doi:10.1142/S0218843001000412.

40 W.M.P. van der Aalst and A. Berti / Discovering Object-centric Petri Nets

[53] Bhattacharya K, Gerede C, Hull R, Liu R, Su J. Towards Formal Analysis of Artifact-Centric Business
Process Models. In: Alonso G, Dadam P, Rosemann M (eds.), International Conference on Business
Process Management (BPM 2007), volume 4714 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 2007 pp. 288–304. doi:10.1007/978-3-540-75183-0 21.

[54] Cohn D, Hull R. Business Artifacts: A Data-centric Approach to Modeling Business Operations and
Processes. IEEE Data Engineering Bulletin, 2009. 32(3):3–9. doi:10.1.1.183.76.

[55] Lohmann N. Compliance by Design for Artifact-Centric Business Processes. In: Rinderle S, Toumani F,
Wolf K (eds.), Business Process Management (BPM 2011), volume 6896 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 2011 pp. 99–115. doi:10.1016/j.is.2012.07.003.

[56] Nigam A, Caswell N. Business artifacts: An Approach to Operational Specification. IBM Systems Journal,
2003. 42(3):428–445. doi:10.1147/sj.423.0428.

[57] Fahland D. Describing Behavior of Processes with Many-to-Many Interactions. In: Donatelli S, Haar S
(eds.), Applications and Theory of Petri Nets 2019, volume 11522 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2019 pp. 3–24. doi:10.1007/978-3-030-21571-2 1.

[58] de Murillas EGL, Reijers H, van der Aalst WMP. Connecting Databases with Process Mining: A Meta
Model and Toolset. In: Schmidt R, Guedria W, Bider I, Guerreiro S (eds.), Enterprise, Business-Process
and Information Systems Modeling (BPMDS 2015), volume 248 of Lecture Notes in Business Information
Processing. Springer-Verlag, Berlin, 2016 pp. 231–249. doi:10.1007/s10270-018-0664-7.

[59] Li G, de Murillas EGL, de Carvalho RM, van der Aalst WMP. Extracting Object-Centric Event Logs
to Support Process Mining on Databases. In: Mendling J, Mouratidis H (eds.), Information Systems in
the Big Data Era, CAiSE Forum 2018, volume 317 of Lecture Notes in Business Information Processing.
Springer-Verlag, Berlin, 2018 pp. 182–199. doi:10.1007/978-3-319-92901-9 16.

[60] van der Aalst WMP, Artale A, Montali M, Tritini S. Object-Centric Behavioral Constraints: Inte-
grating Data and Declarative Process Modelling. In: Proceedings of the 30th International Work-
shop on Description Logics (DL 2017), volume 1879 of CEUR Workshop Proceedings. 2017 URL:
http://ceur-ws.org/Vol-1879/paper51.pdf.

[61] van der Aalst WMP, Li G, Montali M. Object-Centric Behavioral Constraints. CoRR, 2017.
abs/1703.05740. URL: http://arxiv.org/abs/1703.05740.

[62] Artale A, Calvanese D, Montali M, van der Aalst WMP. Enriching Data Models with Behavioral Con-
straints. In: Borgo S (ed.), Ontology Makes Sense (Essays in honor of Nicola Guarino). IOS Press, 2019
pp. 257–277. doi:10.3233/978-1-61499-955-3-257.

[63] van der Aalst WMP, Pesic M, Schonenberg H. Declarative Workflows: Balancing Between Flexibility and
Support. Computer Science - Research and Development, 2009. 23(2):99–113. doi:10.1007/s00450-009-
0057-9.

