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Abstract—In community detection, the theme of correctly
identifying overlapping nodes, i.e. nodes which belong to more
than one community, is important as it is related to role detection
and to the improvement of the quality of clustering: proper
detection of overlapping nodes gives a better understanding of
the community structure. In this paper, we introduce a novel
measure, called cuttability, that we show being useful for reliable
detection of overlaps among communities and for improving the
quality of the clustering, measured via modularity. The proposed
algorithm shows better behaviour than existing techniques on
the considered datasets (IRC logs and Enron e-mail log). The
best behaviour is caught when a network is split between micro-
communities. In that case, the algorithm manages to get a better
description of the community structure.

I. INTRODUCTION

In business contexts, social networks related research ques-
tions are gaining popularity [1], [2]. Indeed, top management
can be interested in analysing social networks involving pro-
fessional relations (i.e. relations inside an organization [3]) to
better understand the functioning of the company (“mining”
it, see [4]). Maps involving professional relations can be built
by direct observation of the relations that hold among workers
(e.g., John exchanges very often e-mails with Tom), or by
using metrics related to business processes. Examples of works
covering this topic are [5] and [6], where the focus is in
approximating and exploring corporate social networks built
on information gathered from e-mails and web use, or [7]
which does study social and temporal structures in everyday
collaboration among workers. Concerning metrics related to
business processes, Van der Aalst et al. [3] describe some
metrics, computed over event logs1, between workers. For
example, Handover of Work (HoW) is, roughly speaking, a
measure of how many times the work of an individual for
a given case is followed by the work of another individual;
Similar Activities (SA) is a measure of similarity between
activities performed by two workers.

Given a social network involving a specific relation, a
common analysis consists in studying community structure of
the organization [9], [10], [11], which is all about grouping
the individuals by their similarity. This can be done using a
clustering algorithm2 (e.g., [12], [13], [14], [15], [16], [17],

1Event logs are time-ordered collections of data concerning executions of
activities performed by workers or by support systems. See [8] for more
details.

2We are considering crisp clustering, where a node belongs only to a cluster.

[10]). Unfortunately, clustering is an ill-defined task, which
makes it difficult to evaluate the quality of the output of
clustering algorithms. In the context of social networks, the
most popular criteria to judge the quality of a clustering is
modularity. Modularity is a concept, described also in [12],
that aims to measure group cohesion inside communities and
separation between them. Although with some limits (see
[18]), modularity is still the most adopted approach in judging
clustering quality. Some clustering algorithms try to maximize
directly modularity (e.g. [12]). Finding the global maximum of
modularity (i.e. the best value) is an hard task, infeasible for
large graphs. However finding a good value of modularity can
be done in nearly linear time, using the Multilevel algorithm
described in [12]. Recently, there has been a growing interest
in spectral clustering algorithms (see e.g., [16], [19]) as
well as on algorithms exploiting special matrix factorization
algorithms, such as Nonnegative Matrix Factorization (e.g.,
[20], [21], [22]). These algorithms, however, are generally
expensive from a computational point of view, so iterative
algorithms not requiring expensive matrix operations, such as
the Multilevel algorithm, are often used in practice since they
can handle larger graphs. Although the results obtained by
the Multilevel algorithm are in general satisfying, in presence
of overlapping communities the performance of the algorithm
degrades.

Detection of nodes that lays at the intersection of overlap-
ping communities (hereafter we will refer them as overlapping
nodes) is important for two main reasons: i) they represent
individuals that cover an important bridging role among com-
munities, and often they are key individuals when considering
the social dimension of the network; ii) being at the borders
of communities, they are starting points for strategies aiming
at improving modularity.

We feel then necessary to introduce a new method to detect
overlapping nodes, in order to effectively improve the quality
of the communities detected in presence of overlaps. Specifi-
cally, we have two main, strongly interconnected, objectives:

• to find the set of nodes that are overlapping among
distinct communities, in order to extract informations
about them;

• to improve the quality of clustering in presence of
nodes at the intersection of overlapping communities,
so to allow the user to get more reliable informa-
tion about the different communities constituting the
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Fig. 1. Visualization of a social network where communities overlap.
Overlapping nodes that threaten the quality of a clustering are emphasized.
Also other nodes have edges that go outside their cluster, but they belong
more clearly to a single community.

network (see Figure 1 to understand the reason why
overlapping nodes are dangerous for clustering).

The basic idea underpinning the approach proposed in this
paper, which shares some similarities with RaRe [23], consists
in: i) computing an initial hypothesis of community detection
(clustering); ii) detecting overlapping nodes; iii) computing a
new clustering after removal of overlapping nodes; iv) inserting
back the removed nodes in such a way to improve modularity
of the resulting clustering. This process can be iterated multiple
times, till modularity converges to a (local) maximum value.
Overlapping nodes detection is performed by a novel measure
called cuttability.

Overall, the proposed approach requires a little more com-
putational time than algorithms like RaRe, however this extra
work is rewarded by an effective detection of overlapping
nodes and by an improvement of clustering quality, according
to modularity. This is demonstrated on social networks built
from datasets involving real data and by using the HoW and
SA metrics previously introduced.

II. PRELIMINARIES

We represent a social network as a weighted graph
G = (V,E,W ), where:

• nodes represent individuals (workers), and are identi-
fied by integers. Thus V , the set of nodes, is a subset
of N;

• edges represent relations between individuals, and are
identified by couples e = (i, j) (where i and j are
identifiers of nodes). The set of edges E is a subset
of V × V ;

• weights W are associated to edges, and they rep-
resent the strength of the relationship represented
by the corresponding edge. Mathematically, they can
be understood as functions from E to R. Given an
edge (i, j) ∈ E the associated weight is denoted as
wi,j ∈ R.

Weighted graphs can be directed (i.e. edge (i, j) can have
a different weight in comparison to edge (j, i)) or undirected
(i.e. (i, j) ∈ E ⇐⇒ (j, i) ∈ E and wi,j = wj,i).

A clustering C of G is a family of subsets S1, . . . , Sn of
V for which Si ∩ Sj = ∅ for i 6= j and ∪k=1,...,nSk = V .
So, each node is assigned to exactly one cluster and we can
define a function C : V → N where C(v) = i ⇐⇒ v ∈ Si

(v belongs to the cluster Si). Clustering methods, as explained
in the introduction, try to maximize a quality function, for
example Modularity [12]. Modularity can be defined as

Q =
1

2m

∑
i,j

[
wij −

kikj
2m

]
δ(ci, cj),

where ki =
∑

j wij is the sum of the weights of the outgoing
edges of node i, ci is the community to which node i is
assigned, the δ-function δ(u, v) is 1 if u = v and 0 otherwise,
and m = 1

2

∑
ij wij .

The Multilevel algorithm [12] aims to reach a good mod-
ularity value. It is an agglomerative method starting with each
node forming an isolated cluster. Then, following a given
order over nodes3, each node is examined: if there exists an
assignment of the current node to a different cluster which
maximizes the overall modularity4 the node is assigned to
that cluster. This reassignment process is terminated when no
further changes for any node can be performed, i.e. a local
maximum of modularity is reached.

III. OVERLAPPING NODES

Overlapping communities [10], [11], [17] are communities,
in the considered social network, with strong connections be-
tween them. Some individuals can be considered to be part of
each of the overlapping communities, although the clustering
algorithm has to assign them to a single community. These
individuals have an important role in community detection as
their correct assignment is key to get a good quality clustering.

Finding overlapping nodes is related to finding roles inside
an organization [24]. Indeed, individuals which are overlapping
between communities are usually “strong communicators” (i.e.
lawyers, HR, . . . ) or belong to management. In addition, their
detection can be important for business process improvement,
because communities have usually a specific role inside an
organization (for example, are related to a specific process
or activity). Finding communities with a large number of
overlapping nodes can be a signal of inefficiency inside the
processes of an organization.

Current approaches for detecting overlapping communities
do not seem satisfying when related to approaches that max-
imize modularity (in presence of overlaps). The most famous
approach for overlapping node detection is the “Palla perco-
lating cliques algorithm” [10]. It is based on the observation
that intercommunity edges are not likely to form cliques (i.e.
a closed path); so, two communities are overlapping when
there are many intercommunity edges which form cliques. This
does not help to maximize modularity as it does not offer a

3The authors of [12] claim that the choice of the ordering does not
significantly affect the quality of the obtained clustering.

4In [12], authors provide an efficient difference formula for recalculating
modularity.
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Fig. 2. An example of how a single node exchange can improve cuttability. Edges styles represent different weight values (dashed edges correspond to a
weight value 1, dotted edges to a weight value 3, solid edges to a weight value 20). Multilevel algorithm does a clustering with communities as in the left
picture; a single exchange of the second node (from the left), as represented by the second picture, can improve cuttability (from −4 to −3). The second node
is overlapping between the two communities.

way to assign overlapping nodes to the correct community. In
this paper, we have assessed the Sequential Clique Percolating
(SCP) [25] algorithm, which is fast enough.

Another approach is RaRe and it is described in [23]. It
consists in calculating, prior to clustering, a measure of central-
ity (for example, Rank or Betweenness) of nodes, removing
them according to their centrality, computing the clustering
on the reduced graph and then inserting the removed nodes
back. This does not seem to be a good idea when the target
objective function is modularity and the clustering algorithm
is Multilevel, as we will see later in the section devoted to
experiments.

Other approaches [20], [21], [22] are related to Non-
Negative Matrix Factorization. Even for these techniques, a
poor performance with respect to modularity was observed in
practical experiments.

IV. CUTTABILITY

In this section, we define a novel measure over edges that
we use to detect overlapping nodes given a clustering of the
network nodes. We call this measure cuttability since, when
aggregating its values over all the edges entering a node, it
returns a score that is high when the node is “in the middle”
between two or more communities, i.e., the node can be cut
away without affecting the coherence of the clusters.

Specifically, cuttability can be defined for each edge of an
undirected weighted graph, provided that its nodes have been
previously clustered. It takes into account the neighbourhoods
of the two nodes i and j (of the edge). We can indeed define
two ancillary functions:

• the sum of the weights of edges connected to q whose
other node belongs to the same cluster of q:

this(q) =
∑

(q,k)∈E,C(q)=C(k)

wq,k,

• the sum of the weights of edges connected to q whose
other node belongs to the same cluster of r:

other(q, r) =
∑

(q,k)∈E,C(r)=C(k)

wq,k,

which can be used to define the cuttability of an edge (i, j) as

cut(i, j) = min{this(i)− other(i, j), this(j)− other(j, i)}.

Applying the previous definition5, if the two nodes belong to
the same cluster, then the cuttability is 0. The cuttability of
the graph G can be defined as the sum of the cuttability of its
edges:

cuttability(G) =
∑

(i,j)∈EG

cut(i, j).

When we work with directed weighted graphs, e.g. adopt-
ing the HoW or SA relations, cuttability can be calculated
transforming the graph into an undirected one (i.e. making
edges (i, j) and (j, i) to have the same weight). Although
with this transformation information about directionality is
lost, this does not prove harmful6 to finding overlapping nodes,
as they usually have strong in-out relationships between several
communities.

There are some differences between good-cuttability clus-
terings and good-modularity clusterings. For example, consid-
ering the Multilevel algorithm there are cases where node ex-
changes between clusters can improve cuttability. This happens
because even if it is true that the Multilevel algorithm can re-
turn a good placement of the node regarding to its neighbours,
this placement is not always the most synthetic description of
communities and their affiliation. Considering social networks,
it may be more significant to describe relations among groups
when there are few strong communicators that do intergroup
relationship work, than to describe them with a myriad of weak
relations between different people. The first scenario is exactly
the one where cuttability is maximized.

The nodes where modularity and cuttability approaches
differ are the overlapping ones. Indeed, they belong in a
slender way to a community and different descriptions (of
communities) are possible. So, the suggested method is about
considering a local maximum of modularity (i.e. no change
of a node’s community can improve the modularity), obtained
using the Multilevel algorithm, and trying to see whether it is a
local maximum of cuttability. If a node’s change of community
can improve cuttability, then the node is considered to be an
overlapping one (see Figure 2 for an example).

5Note that this(q) = other(q, q), but in our opinion it’s clearer to leave
the definition as it is.

6A discussion on this topic can be found in [17].
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Overlapping nodes(G,C)
Require: A weighted graph G, a clustering C of nodes in G
Ensure: A set of overlapping nodes L
L← ∅; . Set of overlapping nodes, initially empty
for all n ∈ V do
Nn ← {C(k) | (n, k) ∈ E} \ {C(n)} . Compute the set of
different communities in the neighbourhood of n
if Nn 6= ∅ then

local cut← 0
for all k ∈ Neigborhood(n) do

local cut← local cut + cut((n, k), C(n))
. cut((u, v), c) computes cuttability of edge (u, v) using
C(u) = c

end for
end if
for all i ∈ Nn do
δ ← 0;
for all k ∈ Neigborhood(n) do
δ ← δ + cut((n, k), i)

end for
if δ > local cut then
L← L ∪ {n}
skip for . Terminate for

end if
end for

end for
return L

Fig. 3. Algorithm for discovering the set of overlapping nodes.

V. FINDING OVERLAPPING NODES AND IMPROVING
MODULARITY

The algorithm we propose for finding overlapping nodes
is described in Figure 3. The algorithm requires in input a
weighted graph and a clustering of its nodes. It returns a set
of overlapping nodes, the set L, if any of them is present.
To check if a node is overlapping, its actual community and
a list of other adjacent communities are considered. In turn,
the community of the considered node is set to one of the
(different) adjacent community and cuttability is checked. If
cuttability increases, the node is added to the set of overlapping
nodes L. It is easy to see that the computational complexity of
the algorithm is linear in the number of edges of the graph. The
character of overlapping nodes can be quite different. Indeed,
overlaps can exist between communities that are effectively
different, or between communities that are similar but were
somehow split by the clustering algorithm. For example, the
Multilevel algorithm can erroneously get them split in order
to try to get a clustering with higher modularity. To verify
if a node belongs to the “first” category (i.e., it overlaps
between two really distinct communities) the restricted graph,
deprived of that single node, should have better modularity.
Indeed, in that case, there are many intercommunity edges
passing through the node which would be removed. The “first”
category is really the one that matters as it describes real
overlaps.

One could argue that, instead of introducing cuttability, it
would have been better to evaluate directly whether nodes have
strong connections between different communities. However,
doing that would rely on a criteria to judge whether a node

Improve modularity(G,L)
Require: A weighted graph G, a set L of overlapping nodes

of G
Ensure: A set of clusters for G
C ← clustering(G \ L) . We use the Multilevel Algorithm
Clusters = {C(k)|k ∈ G \ L}
CL ← ∅ . Set extending C to nodes in L, initially empty
for all n ∈ L do
Ln ← L \ {n} . L without n
Gn ← G \ Ln . Gn ⊂ G with nodes of G \ L plus n
c∗ = arg maxc∈Clusters modu(Gn, C ∪ {C(n) = c})
. arg max returns the smallest cluster index with highest
modularity value for Gn

CL ← CL ∪ {C(n) = c∗}
end for
return C ∪ CL

Fig. 4. Algorithm for improving modularity.

Iterated cuttability(G)
Require: A weighted graph G
Ensure: A set of clusters for G
C ← clustering(G) . We use the Multilevel Algorithm
m← modularity(G,C)
repeat
L← Overlapping nodes(G,C)
Cnew ← Improve modularity(G,L)
new m← modularity(G,Cnew)
if new m ≥ m then
C ← Cnew
m← new m

end if
until new m > m
return C

Fig. 5. The Iterated Cuttability algorithm.

is or not between different communities, looking only to the
strength of connections; cuttability does this work and, in
addition, considers also the structure of the graph, as it seeks
for the “most synthetic” description.

Once we have the list of overlapping nodes, a way we could
consider to improve modularity of the overall graph clustering
is to initially remove overlapping nodes from the graph, then
finding a clustering of the “reduced” graph, and finally trying
to insert back overlapping nodes in the correct cluster in
order to maximize modularity. We try to maximize modularity
because it is the most widely accepted approach in judging the
quality of graph clustering. The algorithm implementing this
approach is described in Figure 4.

Finally, it can be observed that the two steps described
above, i.e., discovering overlapping nodes and improving
modularity, can be iterated, till no more improvement on
modularity is observed. This iterated algorithm is described
in Figure 5. It is easy to verify that such algorithm, soon
or later, is going to converge (to a local maximum), since
the number of different clusterings is finite and the second
step (improving modularity) avoids the possibility of cycling
among different clustering with (local) suboptimal modularity.
We can’t do worse than the Multilevel algorithm because, in
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TABLE I. RESULTS FOR HANDOVER (OF WORK)-BASED SOCIAL NETWORKS, CALCULATED ON DAILY LOGS OF UBUNTU IRC NETWORK FOR THE
FIRST THREE MONTHS OF 2005. THE NUMBER OF OVERLAPPING NODES (O.N.) IS REPORTED IN THE FOURTH COLUMN. MODULARITY VALUES FOR THE

DIFFERENT CONSIDERED ALGORITHMS ARE REPORTED IN COLUMNS 5-9. THE NUMBER OF DISCOVERED COMMUNITIES (CO.) IS REPORTED IN
PARENTHESIS AFTER THE MODULARITY VALUE. THE ACRONYM ON+IM REFERS TO THE PROPOSED APPROACH.

Dataset name #Nodes #Edges #o.n. QSCP (#co.) QBNMF (#co.) QRaRe (#co.) QMultilevel (#co.) QON+IM (#co.)

IRC 0301 HO 288 2067 14 0.0296 (6) 0.2314 (8) 0.5806 (30) 0.6154 (32) 0.6238 (41)
IRC 1501 HO 318 2474 16 0.0975 (11) 0.3576 (8) 0.6079 (32) 0.6272 (36) 0.6601 (42)
IRC 2001 HO 297 2311 13 0.1050 (6) 0.2890 (7) 0.6009 (24) 0.6101 (31) 0.6269 (38)
IRC 0402 HO 323 2767 23 -0.0200 (3) 0.2132 (5) 0.5012 (49) 0.5615 (36) 0.5831 (49)
IRC 0602 HO 338 2626 16 0.0608 (9) 0.2432 (13) 0.5800 (31) 0.6261 (37) 0.6308 (49)
IRC 1402 HO 385 3036 19 0.0035 (6) 0.2699 (9) 0.5993 (35) 0.6025 (44) 0.6240 (52)
IRC 1802 HO 383 3022 20 0.0056 (7) 0.3337 (8) 0.6057 (34) 0.6148 (41) 0.6295 (59)
IRC 2102 HO 402 3380 25 -0.0141 (5) 0.2375 (15) 0.5910 (39) 0.5980 (44) 0.6059 (61)
IRC 2503 HO 457 3662 29 0.0053 (4) 0.2715 (8) 0.5809 (29) 0.6119 (44) 0.6153 (62)
IRC 2703 HO 474 3495 49 0.0127 (7) 0.2749 (11) 0.6065 (32) 0.4330 (162) 0.6329 (101)

TABLE II. RESULTS FOR SIMILAR ACTIVITIES-BASED SOCIAL NETWORKS, CALCULATED ON DAILY LOGS OF UBUNTU IRC NETWORK FOR THE FIRST
THREE MONTHS OF 2005. THE NUMBER OF OVERLAPPING NODES (O.N.) IS REPORTED IN THE FOURTH COLUMN. MODULARITY VALUES FOR THE

DIFFERENT CONSIDERED ALGORITHMS ARE REPORTED IN COLUMNS 5-7. THE NUMBER OF DISCOVERED COMMUNITIES (CO.) IS REPORTED IN
PARENTHESIS AFTER THE MODULARITY VALUE. THE ACRONYM ON+IM REFERS TO THE PROPOSED APPROACH.

Dataset name #Nodes #Edges #o.n. QRaRe (#co.) QMultilevel (#co.) QON+IM (#co.)

IRC 1301 SA 232 42660 3 0.0172 (13) 0.0227 (2) 0.0229 (2)
IRC 2001 SA 297 72826 3 0.0229 (16) 0.0273 (3) 0.0275 (3)
IRC 3001 SA 375 113106 1 0.0356 (21) 0.0442 (3) 0.0444 (3)
IRC 0402 SA 323 88530 8 0.0206 (18) 0.0260 (2) 0.0262 (2)
IRC 2802 SA 390 119832 5 0.0416 (26) 0.0455 (2) 0.0457 (2)
IRC 0403 SA 402 131216 7 0.0177 (22) 0.0267 (2) 0.0269 (2)
IRC 1003 SA 362 109400 2 0.0177 (20) 0.0196 (2) 0.0197 (2)
IRC 1103 SA 395 120944 4 0.0279 (21) 0.0339 (2) 0.0341 (2)
IRC 2503 SA 457 172182 6 0.0208 (24) 0.0248 (2) 0.0250 (2)
IRC 3103 SA 545 227156 9 0.0272 (30) 0.0444 (2) 0.0446 (2)

the worst case, we keep its modularity.

VI. EXPERIMENTAL ASSESSMENT

In order to assess the proposed approach, we have used
datasets involving IRC (Internet Relay Chat)7 and Enron
email log [26] data. Moreover, for the IRC datasets, we have
compared our basic approach, hereafter refereed to with the
acronym ON+IM (Overlapping Nodes plus Improve Modu-
larity), versus the following algorithms present in literature:
SCP [25], BNMF [20], RaRe [23], and Multilevel [12]. Non-
Negative Matrix Factorization-based methods (like BNMF)
require to specify a number of basis, that corresponds to the
number of communities which are looked for in the graph.
In order to have a proper comparison versus our method, we
have searched the number of basis maximising modularity
within the interval [1, . . . , 50]. The results obtained for IRC
datasets by the iterated version of our approach are discussed
in Section VII.

For the Enron email log dataset, we have just performed
the discovery of overlapping nodes by using our Overlapping
Nodes algorithm described in Figure 3.

A. Application to IRC logs

IRC (Internet Relay Chat) is a popular chat system working
in a client-server way: the client could connect to the server
and join some channels where he/she could have some chat-
ting. IRC logs are collections of these discussions, usually
recorded by bots (non-human IRC clients).

7http://irclogs.ubuntu.com/

TABLE III. NICKNAMES OF USERS CORRESPONDING TO TOP
OVERLAPPING NODES IN IRC 2703 HO AFTER THE APPLICATION OF THE
PROPOSED APPROACH. THEY CORRESPOND TO USERS INVOLVED INTO THE

MOST DIVERSIFIED DISCUSSIONS.

fabbione cef prego DarthFrog
hou5ton thom jordi Hayden
mvo thoreauputic tyler chillywilly
Xappe Myrtti niran Levander
sic icebalm garrut streetbmx
NeverTheLess ali racingcamel glguy
omniwork mirco [dEvIL-mAN] kanga
OC Doppelganger Anubis brbr gilles
trans err Bwl edulix phas
neighborlee tofu Nomikos Snarfy
Riddell jazzka pauldaoust Carl
TPC dazedlap lagCisco rob

Seemingly far from a business context, IRC logs taken
by various IRC channels have a structure that is similar to
an organization. There are indeed handovers (of discussions)
between individuals and two users are considered to have
“similar activities” if they chat with the same intensity in the
same channels.

The logs we have considered are from the Ubuntu IRC
Network, related to the famous Linux distribution. This “spe-
cialised” network aims at offering help and know-how to Linux
users. The main feature of this IRC network is that users
usually chat in a single specific channel so, roughly speaking,
almost every channel is a “closed” group having its users.

Modularity results obtained for the Handover (of Work)-
derived network are reported in Table I. Both SCP and BNMF
returned very poor modularity values, so we decided not to
consider them for the experiments reported in the following.
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TABLE IV. OVERLAPPING IS NOT JUST ABOUT TWO COMMUNITIES: RICHARD SANDERS IS OVERLAPPING BETWEEN THESE 4 DIFFERENT
COMMUNITIES (EVEN IF NOT EXPLICITLY WRITTEN IN ANY ONE BELOW). ONLY THE 7 MOST ACTIVE MEMBERS FOR EACH COMMUNITY ARE SHOWN.

Com.A Com.B Com.C Com.D

tana.jones@enron.com kay.mann@enron.com steven.kean@enron.com louise.kitchen@enron.com
sara.shackleton@enron.com benjamin.rogers@enron.com richard.shapiro@enron.com sally.beck@enron.com

mark.taylor@enron.com suzanne.adams@enron.com jeff.dasovich@enron.com john.lavorato@enron.com
susan.bailey@enron.com ben.jacoby@enron.com james.steffes@enron.com greg.whalley@enron.com

mark.haedicke@enron.com sheila.tweed@enron.com susan.mara@enron.com jeffrey.shankman@enron.com
elizabeth.sager@enron.com kathleen.carnahan@enron.com paul.kaufman@enron.com mike.mcconnell@enron.com

carol.clair@enron.com carlos.sole@enron.com mark.palmer@enron.com rick.buy@enron.com

We have chosen the Multilevel algorithm as the base clustering
algorithm for the RaRe technique; nodes removal threshold
for RaRe was chosen to be 5%; other thresholds also did
not show an improvement. In Table II we have reported
modularity results obtained for the Similar Activities-derived
network. While for the first metric we have obtained a good
number of overlapping nodes and the quality of clustering
really improves, for the second metric we have obtained only
marginal improvements. This, indeed, is related to the “closed
groups” structure of Ubuntu IRC Network, so there is no much
space for overlaps among communities.

Considering the Handover (of Work) metric, we can ob-
serve that for log IRC 2703 HO modularity improves from
0.4330 (initial clustering returned by the Multilevel algorithm)
to 0.6329, with a gain of almost 50%. It is clear that over-
lapping nodes ruined the result obtained by the Multilevel
algorithm, while our algorithm helped to improve the situation.
In this case, also the RaRe approach helped to improve
modularity, even if the result obtained is slightly inferior
compared to our method.

Considering again IRC 2703 HO, it is interesting to iden-
tify which are the top overlapping nodes detected by our
algorithm (see Table III). They correspond to users that are
not the most active in the network, according to the number
of lines in the log, but the ones having the greatest number
of discussions with different people: among the top detected
overlapping nodes, we find the user fabbione, which is the
Team Leader of Ubuntu Server, and hou5ton, which is an active
“helper”8. Thus, our algorithm finds overlapping nodes which
are meaningful in role and importance inside the relation map.

B. Application to Enron email log

The Enron email log [26] is a large log (it contains over
600000 emails) that was obtained and then released by a CS
researcher after the crack of Enron company. It is particular
interesting because reports email communications among top
management. A social network can be built upon it with the
use of “frequency of communication” metric: two individuals
are connected by an edge if they exchange emails. Moreover,
the value of the weight associated to each edge is proportional
to the amount of communications occurred between them. We
were expecting to find several communities inside Enron’s
email network, each one corresponding to different roles inside
the company, as well as several overlapping nodes among the
coordinators of these communities, as they effectively belong
to more than one community.

8He has helped people to use Ubuntu IRC Network.

TABLE V. SOME OVERLAPPING NODES IN ENRON EMAIL NETWORK
(BASED ON FREQUENCY OF COMMUNICATIONS). WE SEE THAT PART OF

TOP MANAGEMENT (THE ONES WHICH HAVE A LARGE NUMBER OF
DIFFERENT CONTACTS) APPEARS HERE.

Address # received emails Role

pete.davis@enron.com very high (>5000) Community organizer
richard.sanders@enron.com high (>500) Assistant general counsel
brent.hendry@enron.com high (>500) Seniour counsel
susan.scott@enron.com high (>500) Communications expert

robert.badeer@enron.com high (>500) Trader
bryan.hull@enron.com high (>500) Analyst

brian.redmond@enron.com high (>500) Managing Director
kimberly.hillis@enron.com high (>500) Executive Assistant

paula.rieker@enron.com high (>500) No.2 Executive
don.black@enron.com high (>500) Vice president

jonathan.mckay@enron.com high (>500) Vice president

Applying our algorithm, we find several overlapping nodes,
and the majority of them cover important roles inside the Enron
company (see Table V). Discovered individuals cover roles
from senior counseling (Richard Sanders and Brent Hendry) to
high management (Paula Rieker, Don Black, Jonathan Mick),
communications and community experts (Pete Davis and Susan
Scott) and financial (Robert Badeer and Bryan Hull). Trying
to analyse the “network” behind a given person, it results
that these overlapping nodes effectively belong to at least two
different communities. Richard Sanders, (see Table IV), for
example, did belong to four different communities. Thus, our
algorithm succeeded in finding nodes which, given their role,
effectively overlap.

Concerning modularity, we observe only limited improve-
ments: the initial value was 0.6495, while the value after the
application of our algorithm is 0.6542. We think this is mainly
due to the fact that the Multilevel algorithm was not hampered
so much by overlapping nodes, being thus able to reach a quite
good modularity value from the beginning.

VII. DISCUSSION

A. Why in some logs are there only small improvements in
modularity?

In the previous section, we have seen that, for some logs,
our approach does get only a small improvement in modularity,
even if there were a decent number of overlapping nodes. One
could think that the clustering would have been more heavily
hit by the presence of overlaps among communities. Why in
most cases the Multilevel algorithms can get already a good
modularity value?

This was explained in [27], and it is related to the particular
topology of communities near the optimum modularity value.
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Indeed, in [27] it is shown that there are many clusterings
whose modularity is near to the “global maximum”, and
it is eventually easy for clustering algorithms which try to
maximize modularity, like the Multilevel one, to get a good
modularity value9. Thus, even if overlapping nodes occur, it
is relatively easy for the Multilevel algorithm to reach a good
clustering. Because of that, what we think our algorithm does
is to get the clustering further nearer to the global maximum
of modularity.

B. Where are the biggest improvements?

Considering again the IRC 2703 HO log, we can ask why
there was such a big improvement in modularity. Let us start
with few observations:

• IRC 2703 HO’s clustering by the Multilevel algo-
rithm exhibits 162 different communities, among 474
nodes. So, the detected communities are really small,
and we can consider them micro-communities.

• For the same log, our algorithm detects 101 different
communities and 49 overlapping nodes (a large quan-
tity of overlapping nodes).

The fact that the Multilevel algorithm finds a clustering
with a low modularity is mainly due to the modularity resolu-
tion problems, which are described in [18]. Roughly speaking,
modularity maximization approaches (like the Multilevel al-
gorithm) suffer, and in many cases fails, to find the actual
community structure when the communities are small; those
are eventually merged by the Multilevel algorithm into bigger
ones, which fail to catch the complexity of the community
structure, while getting to a “local maximum” of modularity.
In IRC 2703 HO, the Multilevel algorithm was not somehow
hampered by resolution problems, managing to find micro-
communities. These, when found by the clustering algorithm,
are more likely (see always [18]) to represent the actual
community structure. The discovery of micro-communities,
however, is paid for by a low value of modularity.

Our approach is still able to discover many micro-
communities (101) while obtaining a good modularity value.
Moreover, the micro-communities detected by our approach
seem to be well defined, as shown by the large number of
overlapping nodes, which is what is expected when many small
communities are present and interact each other.

C. What happens to overlapping nodes?

After detecting overlapping nodes and trying to improve the
community structure, one may ask if, applying the algorithm to
the new clustering, the overlapping nodes found in the previous
phase are “confirmed” as overlapping nodes (confirming that,
even if the community description got improved, they are
always between distinct communities) or instead “disappear”.

In the considered applications, we have found three be-
haviours (see Table VI):

• Nodes that are overlapping both considering the old
and the new clustering. These “persisting” overlapping

9A “local maximum” which is near to the “global maximum”.

TABLE VI. NUMBER OF OVERLAPPING NODES FOUND BY APPLYING
OUR METHOD (TO FIND OVERLAPPING NODES) TO THE INITIAL
CLUSTERING AND TO THE CLUSTERING OBTAINED AFTER ONE

APPLICATION OF THE ALGORITHM (TO IMPROVE MODULARITY).

# overlapping nodes (o.n.) % o.n.

Dataset Name start 1st iter. shared shared

IRC 0301 HO 14 8 4 50,00 %
IRC 1501 HO 16 7 4 57,14 %
IRC 2001 HO 13 7 5 71,43 %
IRC 0402 HO 23 13 9 69,23 %
IRC 0602 HO 16 12 7 58,33 %
IRC 1402 HO 19 8 4 50,00 %
IRC 1802 HO 20 19 10 52,63 %
IRC 2102 HO 25 19 12 63,16 %
IRC 2503 HO 29 25 14 56,00 %
IRC 2703 HO 49 38 17 44,74 %

TABLE VII. APPLICATION OF OUT ITERATED ALGORITHM. IN SOME
CASES, THE COMMUNITY STRUCTURE CAN BE FURTHER IMPROVED.

# iter. Modularity

Dataset Name ON+IM Multilevel ON+IM 1st iter. ON+IM final

IRC 0301 HO 1 0.6154 0.6238 0.6238
IRC 1501 HO 1 0.6272 0.6601 0.6601
IRC 2001 HO 3 0.6101 0.6269 0.6599
IRC 0402 HO 1 0.5615 0.5831 0.5831
IRC 0602 HO 1 0.6261 0.6308 0.6308
IRC 1402 HO 1 0.6025 0.6240 0.6240
IRC 1802 HO 2 0.6148 0.6295 0.6628
IRC 2102 HO 1 0.5980 0.6059 0.6059
IRC 2503 HO 1 0.6119 0.6153 0.6153
IRC 2703 HO 1 0.4330 0.6329 0.6329

nodes are clearly between at least two distinct com-
munities, which are confirmed to be clearly distinct
also considering the new clustering.

• Nodes that are overlapping considering the old cluster-
ing, but are not considered as overlapping in the new
clustering. This happens because of the improvement
of the community structure, which makes these nodes
belonging more clearly to a community.

• Nodes that are overlapping in the new clustering,
but were not overlapping in the old one. Due to the
change of the community structure, it may happen
that nodes get slender belonging to a community and,
so, applying our algorithm to the new clustering, are
detected as overlapping.

We see, in Table VI, that the first category is, as expected,
the most numerous one, followed by the second.

Given the results obtained in Table VI, we applied to
the IRC datasets the iterated algorithm defined in Figure 5.
While in most of the considered datasets the iterated algorithm
terminated after 1 iteration, there are cases when using it a
clear improvement of the community structure is observed (see
Table VII). Considering IRC 2001 HO, in the third iteration
we find 5 overlapping nodes: 4 of them are “persisting” in
comparison to the second iteration and 1 is a newly detected
overlapping node, confirming the prevalence of “persisting”
overlapping nodes.
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VIII. CONCLUSIONS

In this paper, we have proposed a new concept, i.e., cut-
tability, to detect overlapping nodes in social networks. Over-
lapping nodes are particularly interesting in business contexts
because of their inter-community role. Correctly identifying
overlapping nodes, indeed, is a key to get an improvement
in detected community structure, and so an improvement on
the information top management can get from “professional
relation” networks, such as the one derived by Handover
of Work or Similar Activities. While the improvements in
modularity are not large, the proposed method seems more
consistent (see Table I) than other existing approaches. More-
over, detected overlapping nodes are shown to have really an
inter-community role (see Table IV). The proposed method
seems to produce the biggest improvements in modularity
when there is a micro-communities structure (so, there are
many very small communities) as the correct assignment of
the single node becomes truly important.
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