
What is Testing?

• In Manual testing, a human runs the program and interacts with it to 
find bugs.

• Automated Testing is the practice of writing code (separate from your 
actual application code) that invokes the code it tests to help 
determine if there are any errors.

• It does not prove that code is correct. 



Why Testing?

• Testing makes sure your code works properly under a given set of 
conditions

• Testing allows one to ensure that changes to the code did not break 
existing functionality

• Good testing requires modular, decoupled code, that is a sign of a 
good system design



What kind of things can be caught in testing?

• Syntax errors: unintentional misuses of the language

• Logical errors: created when the algorithm (the way the problem is 
solved) is not correct.



Unit Testing

• Tests a single “unit” of code.

• A unit could be an entire module, a single class or function, or almost 
anything in between.

• Consider the following example:



Two functions: is_prime and print_next_prime. Two units

If we want to test print_next_prime, we need first to be sure that is_prime is correct. It is correct?

We write a test for is_prime





Unit tests

• Using the unittest Python package, a unit test consists of one or more 
assertions.

• self.assertTrue asserts that the argument passed to it evaluated to 
True.

• The unittest.TestCase class contains a number of assert methods

• The list could be checked to pick the appropriate methods for your 
tests.



Unit tests – Fixing Things

• Once we fix the error (for element in range(2, number)), the test runs 
correctly.

• Now that the error is fixed, does that mean that we should delete the 
test method? No. unit tests should rarely be deleted as passing tests 
are the end goal.

• You can write several tests for the same function



Credits

• https://docs.python.org/3/library/unittest.html

• https://www.python-kurs.eu/python3_tests.php

• https://jeffknupp.com/blog/2013/12/09/improve-your-python-
understanding-unit-testing/

https://docs.python.org/3/library/unittest.html
https://www.python-kurs.eu/python3_tests.php
https://jeffknupp.com/blog/2013/12/09/improve-your-python-understanding-unit-testing/


Sprint 3 – What I expect

• Some planning with:
• Assignee

• Estimated Duration

• At the end:
• Comparison between estimated durations and real duration for all the tasks 

for all the sprints (to see if the estimations improved)

• A summary of all the tasks for all the sprints along with the assignee (just to 
check if the workload inside the group was even).



Testing and Assessment



1) Documentation

• Motivation of the project.

• What is the input and what is the output of the project

• How to install the product (e.g. install Python 3.7, follow the 
installation tutorial of PM4Py, download from the specified 
repositories …)

• How to run the project



2) Unit Tests

• It is important to write some unit tests to check if your code is 
correct.

• You have the ALGORITHM and you have the SERVICE.

• The ALGORITHM can be tested using unittest (please be as much 
modular as possible with your code)

• The SERVICE can be tested using particular requests (for example 
using the requests package).



3) Exceptions / Logging

• Bugs are everywhere 

• It’s important to have a proper logging mechanism to signal 
exceptions in the code.

• Exception management:

• try: except:

• You can define custom exception types. You can catch custom 
exception types. You can RAISE custom exceptions.



4) API

• The provision of the web services API are important in order to 
integrate your product with other products.

• If you want to be professional, look at an API documentation 
framework (for example Swagger)

• Example of API: URI of the service, arguments in the URL, arguments 
of the POST request, types of the arguments, description of the 
service.



5) Code Quality

• Internal to Pycharm or through Pylint you have some (configurable) 
ways to measure the quality of your code.

• If you want to get a really really really good grade please execute 
some of these tests.

• When you execute such tests, you have a list of complaints. If you 
start working the complaints, you get a lower grade.

• PS: please focus on yours code not the distributed engine (that I am 
aware it gets a low grade  )



6) Internal Code Documentation (as much as 
possible  )
• Helps to describe the method, its input and its output.

• Important for the final Python user.



7) (Python >= 3.6) Arguments Annotations

• Permits to specify the type of the arguments and of the return type.

• At run-time it changes nothing.

• At development time, it helps you.

• Useful when you return objects from a function and you want to 
operate with them (Pycharm then tells you which are the methods 
and variables contained in the object).



7) (Possibly) measure the performance of your 
product
• Both for algorithms and web services, you can measure the execution 

time.

• You have several ways to do that, the most cheap is:

import time

aa = time.time()

func()

bb = time.time()

print(bb-aa)



8) (If possible) “Professional” deployment of 
your application 
• Maximal freedom is left there:

• UWSGI

• Docker (as proposed by some of you at the start of the lesson)

• This is you want to achieve a really really really good grade (expecially
MSc).


