
Git: introduction



Version control

• A system that is able to keep track of changes happening to 
files/directory, in order to possibly get a specific version of the file 
over time.

• Wanted characteristics of a VCS:
• Data integrity: each small change shall be tracked, and never be lost

• Possibility to get a specific version a file

• Speed

• Collaboration: the same files may be edited by several people



Motivation

• https://en.wikipedia.org/wiki/Git

• Git is a version-control system, primarily used for source-code 
management in software development

• Git was created by Linus Torvalds in 2005 for development of the 
Linux kernel.

• Every Git directory on every computer is a full-fledged repository with 
complete history and full version-tracking abilities

• Most of Git is written in C

• Compatible with Windows, macOS, UNIX

https://en.wikipedia.org/wiki/Git


You can create a Git repository without any 
remote counterpart
• Create a folder

• Do “git init”

• From that moment, the specific folder is a repository

• You can enter the .git subdirectory that contains specific 
configurations files.



git status

• Returns the status of the repository along with the list of files 
added/modified/removed/moved locally in comparison to the index.

• Very useful in identifying conflicting files

• A file / a list of files that were added/modified/removed/moved 
locally has to be manually added to the index through the basic 
commands “git add”, “git rm”, “git mv”



Basic commands

• git add -> adds a file / a list of files to the index

• git rm -> removes a file / a list of files both locally and in the index

• git mv -> moves a file into a new location both locally and in the index

• git reset -> when some files have changed in the index, reset the 
situation (e.g. if I have added local file changes to the index, then 
resetting means make the index go back to the last committed 
version of the file)



Git commit

• A commit operation saves the current index (possibly associating a 
name). 

• Commits get saved inside the internal Git structure linked to a 
previous commit (it is a Directed Acyclic Graph).

“A branch is simply a
lightweight movable pointer
to one of these commits.”

A TAG is a fixed pointer/name
given to a particularly important
commit



Git commit

• Correct way of committing is always providing a message describing 
the commit.

• git commit –m “Description of the commit”



Git branch

• “A branch is simply a lightweight movable pointer to one of these 
commits.”

• To see the list of branches that are saved into the local repository, 
then the:

• git branch

• command is of help.

• To move along branches that are existing on the system, it is enough 
to do git checkout branch_name

• To create a new branch pointing to the commit that is “on head”, then 
it is enough to do git checkout –b new_branch_name



Why branches?

• To manage complex software projects 
where, for instance, multiple versions 
need to be maintained at the same time.

• Working on multiple “local” and 
“remote” branches could be useful to 
work in concurrency on different 
features (each feature may break 
something, so better to keep changes 
splitted).

• Branches may introduce new features, or 
contribute to solve a bug …



Committing on branches

• A commit is added to the system pointing to the actual branch.

• The branch referral is then moved to the current commit.

• Merging permits to unite the contribute of different branches.

• Suppose we have a develop branch and different “feature” branches 
starting in different points of time.

• A merge operation from the feature branch to the develop branch 
shall take the contribution the feature branch and “unite” it with the 
develop branch (that could be changed from the moment the 
“develop” branch is created)



Merge of branches

• Two things could happen:
• The develop branch has not changed from the commit that started the 

“feature” branch .. In that case the develop branch is just moved to the 
current commit referred by the “feature” branch.

• In the case the “develop” branch changes .. Then problems arises ☺
• A new commit that “takes as input” both the last commit of the feature 

branch both the last commit of the develop branch has to happen.
• When it happens automatically:

• When touched files are different.
• When the auto-conflict solver succeeds.

• When it does not happen automatically:
• When there are conflicts that the auto-merge strategy fails to resolve.



How conflicts are signaled

• In git status, conflicting files are clearly signaled with the “Both 
modified” flag.

• To resolve a conflict, you have to open manually the file and fix all the 
discrepancies

• Then you can manually

commit



How to do the merge of branches

• Go to the target branch through the command git checkout 
target_branch

• Start the merge through the command git merge branch_to_merge

• If no conflict occur, then do nothing.

• If conflicts occur, then fix them and commit them manually.

• It is possible to delete from the list of branches a branch that has 
been already merged through the command git branch –d 
branch_name.

• The command will protest if there are “unmerged changes” but will 
go on if everything has been merged correctly.



Git log

• Reports the information about the commits:

Each commit has an unique 
identifier and reports clearly the
branches that are pointing to it 
and the author



Log for a particular file

• Using the command git log –follow nomefile



How to “delete” a local commit

• Sometimes we commit things that “we aim to have never 
committed”.

• While physically the commit remains, it is possible to leave it as 
unconnected nodes so future commits do not start from it.

• To “delete” in this way a local commit (that has not been pushed to 
remote) it is enough to do git reset –hard shaidofcommit

• Then, changes have to be committed. This commit would take the 
lead for the current branch.



How to retrieve a particular version of a file

• We have seen that the command git checkout accepts the name of a 
branch. But a branch is effectively corresponding to a particular 
commit so it’s possible to do git checkout shaidcommit in order to 
retrieve the status of the repository at the given commit.

• It’s also possible to retrieve a specific version of a file with the 
command git checkout shaidcommit interestingfile

• Changes to that version of interestingfile could be then committed to 
the current branch.



How to compare current file on local system 
with a specific version
• It is possible to use the command git diff shaidcommit filename



How to know who to blame inside your team 
for a bug ☺
• It is enough to do git blame file_name

• Each row has an assignee so it is clear who have added the particular 
row



Important file: .gitignore

• For certain files, it may be useless to include them in the version 
control:
• Saved output files (may be big)

• Compiled files (.class, .o)

• A .gitignore file could contain the names of the files not to include in 
the git status representation, or some regular expressions (e.g. *.o for 
avoiding .o files to be included)



Submodules

• https://git-scm.com/docs/git-submodule

• Include physically other projects inside your project by reference.

• The simplest deployment could be git submodule add repository_url

• Then, a .gitmodules file is created and the config file inside the .git
directory is updated with information about the position of the 
repository.

• Following that, these instructions need to be deployed:
• git submodule init

• git submodule update

https://git-scm.com/docs/git-submodule


Submodules

• If the following commands are deployed:

• git submodule add https://github.com/pm4py/pm4py-source.git

• git submodule init

• git submodule update

• Then a pm4py-source folder is created where, in the internal content, 
the PM4Py project is included.

• If we operate inside the pm4py-source, commits are touching THAT 
repository.

https://github.com/pm4py/pm4py-source.git


Remote branches

• For now, we have worked on local branches.

• Even at local level, git is powerful enough to ease developers life:
• Version control

• Branches

• But the power of git is to enable collaboration among people of a team.

• A remote repository is a repository that is not necessarily on your local 
machine, that can sync the local repository or be synced from the local 
repository.

• Ideally, remote repositories should be easily accessible by the members of 
the team (notable examples could be Github, Bitbucket, Gitlab …)



How to “get sync” with a remote branch

• git clone operation clones an exact copy of the remote repository in the 
local machine. All the history of commits is included in the local repository.

• It is possible to “connect” a local repository with a remote repository in a 
later stage. In that case, the following command needs to be deployed:

• git remote add origin urloftherepository

• After adding a remote reference to the repository, it is possible to pick its 
commits (and so, the branches) with the command git fetch –all.

• These would not be added automatically to the local branches. If that is 
intended, then the command git pull –all is what is needed.



Git fetch --all

• You can see both local and remote branches.



PULL vs PUSH

• PULL operation: I take remote commits to my local repository

• PUSH operation: I take local commits and I send them to the remote 
repository.

• It’s always better to pull before pushing ☺

• If there are commits in the remote repository that are not in the local 
repository, the push operation will fail and we are reminded to pull

• When the pull happens, if there are new commits in the remote 
repository, the “commit DAG” is changed accordingly.

• As the merge of branches, also the pull can cause conflicts.

• Conflicts need to be resolved in the same way.



Pushing from a local branch that does not 
exist remotely
• In this case, git push itself would fail.

• The right command is: git push –set-upstream origin namebranch

• This creates a correspondence between the namebranch (local 
branch) and the remote branch origin/namebranch



Remove a commit that has been pushed to 
the remote repository
• In this case, the command git revert shaidofthecommit shall be used.

• A commit shall happen, where files of the commit are reverted to the 
previous status.

• The old commit would still appear in the git log but will then look 
unconnected in the DAG (so in practice they won’t turb lives 
anymore).



Removing a remote branch

• After merging (through git merge) and removing the local branch (git
branch –d …) one may wonder how to remove the branch from the 
remote repository.

• Actually, this is possible through the command git push origin 
:deletedbranchname

• To delete locally a branch that has been removed remotely, it is 
possible to use the command git fetch -p



Example: Github

• On Github, I can create a new remote repository. After that, I could 
clone it and work as described.

• If I need to work on a project to which I do not have access privileges, 
I could:
• Fork it

• Do the changes on “my own” repository (that is a clone of the other 
repository).

• Do a pull request

• A pull request is a request that reaches the creator(s) of the original 
project in order to make your changes accepted.


