Git: introduction

Version control

* A system that is able to keep track of changes happening to
files/directory, in order to possibly get a specific version of the file
over time.

 Wanted characteristics of a VCS:

e Data integrity: each small change shall be tracked, and never be lost
* Possibility to get a specific version a file

* Speed

* Collaboration: the same files may be edited by several people

Motivation

* https://en.wikipedia.org/wiki/Git

* Git is a version-control system, primarily used for source-code
management in software development

* Git was created by Linus Torvalds in 2005 for development of the
Linux kernel.

* Every Git directory on every computer is a full-fledged repository with
complete history and full version-tracking abilities

 Most of Git is written in C
* Compatible with Windows, macOS, UNIX

https://en.wikipedia.org/wiki/Git

You can create a Git repository without any
remote counterpart

* Create a folder
* Do “git init”
* From that moment, the specific folder is a repository

* You can enter the .git subdirectory that contains specific
configurations files.

git status

* Returns the status of the repository along with the list of files
added/modified/removed/moved locally in comparison to the index.

* Very useful in identifying conflicting files

A file / a list of files that were added/modified/removed/moved
locally has to be manually added to the index through the basic

””

commands “git add”, “git rm”, “git mv”

Basic commands

e git add -> adds a file / a list of files to the index
e git rm -> removes a file / a list of files both locally and in the index
e git mv -> moves a file into a new location both locally and in the index

e git reset -> when some files have changed in the index, reset the
situation (e.g. if | have added local file changes to the index, then
resetting means make the index go back to the last committed
version of the file)

GIt commit

A commit operation saves the current index (possibly associating a
name).

* Commits get saved inside the internal Git structure linked to a
previous commit (it is a Directed Acyclic Graph).

HEAD |
Multiple parents l

o . .
’ v0.1 c98£570 +—— 70f42ec +—— 0806a8b master A branch is simply a

| = N | lightweight movable pointer
| to one of these commits.”

’ 97ce729 ¢—— B8f845c4 |¢—— 08e022e ¢—— 44f1e05 —— 485884e —— a%90d190 &—— 34acc3d7 ‘

5fb761e —— 3571299 +—— 82cd566 vi.0))
\ l I l A TAG is a fixed pointer/name

Multiple children . . .
given to a particularly important
commit

feature/2

GIt commit

e Correct way of committing is always providing a message describing
the commit.

e git commit —m “Description of the commit”

Git branch

* “A branch is simply a lightweight movable pointer to one of these
commits.”

* To see the list of branches that are saved into the local repository,
then the: :;lp:::;ertlﬂatmn

bpmnIntegration

* git branch
e command is of help. !

* To move along branches that are existing on the system, it is enough
to do git checkout branch_name

* To create a new branch pointing to the commit that is “on head”, then
it is enough to do git checkout —b new_branch_name

Why branches?

* To manage complex software projects
where, for instance, multiple versions
need to be maintained at the same time.

* Working on multiple “local” and
“remote” branches could be useful to
work in concurrency on different
features (each feature may break
something, so better to keep changes
splitted).

* Branches may introduce new features, or
contribute to solve a bug ...

Committing on branches

* A commit is added to the system pointing to the actual branch.
* The branch referral is then moved to the current commit.
* Merging permits to unite the contribute of different branches.

e Suppose we have a develop branch and different “feature” branches
starting in different points of time.

* A merge operation from the feature branch to the develop branch
shall take the contribution the feature branch and “unite” it with the
develop branch (that could be changed from the moment the
“develop” branch is created)

Merge of branches

* Two things could happen:

* The develop branch has not changed from the commit that started the
“feature” branch .. In that case the develop branch is just moved to the
current commit referred by the “feature” branch.

In the case the “develop” branch changes .. Then problems arises ©

A new commit that “takes as input” both the last commit of the feature
branch both the last commit of the develop branch has to happen.

When it happens automatically:
 When touched files are different.
* When the auto-conflict solver succeeds.
When it does not happen automatically:
 When there are conflicts that the auto-merge strategy fails to resolve.

How conflicts are signaled

* In git status, conflicting files are clearly signaled with the “Both
modified” flag.

* To resolve a conflict, you have to open manually the file and fix all the
discrepancies

° Then you can manua”y # How to create a merge conflict

zc<c<<<< HEAD

Commlt 4 First you add a file,

change

but create a conflicting

on another branch.
First you add a file.

Then you add something on another branch and
commit it.

How to do the merge of branches

* Go to the target branch through the command git checkout
target_branch

e Start the merge through the command git merge branch_to_merge
* If no conflict occur, then do nothing.
* If conflicts occur, then fix them and commit them manually.

* It is possible to delete from the list of branches a branch that has
been already merged through the command git branch —d
branch_name.

* The command will protest if there are “unmerged changes” but will
go on if everything has been merged correctly.

Git log

Each commit has an unique
identifier and reports clearly the

* Reports the information about the commits: branches that are pointing to it

ommit 33220 caYsalYesseal D) _(HEA) and the aUthor

Author: Alessandro Berti bett1ﬂpads thh aachen des
H Tue Nov 20 16:45:51 2018 +0100

Added stochastic Petri Net example starting from Pandas dataframe
ommit c975af44d90d551d7elb7170861184923345f58b
: b2f402a 0d56adl
~: Alessandro Berti erti@pads. rwth-aachen. de>
Tue Nov 20 16:41 2018 +0100
Merge branch 'develop’ into stochasticIntegration
ommit 0d56adld&21ldeOcadbbd4aeabfb4141f15e744131 (

-: Alessandro Berti ia.bert%@pads.rw%h—aacheﬁ._ >
Tue Nov 20 16:39:53 2018 +0100

Bug fix
ommit b2f402a6e723a0722dd5fec29e636363c06363eb
Author: Alessandro Berti <a.berti@pads.rwth-aachen.de>

H Tue Nov 20 16:39:13 2018 +0100

Added mechanism in order to get stochastic map also from dataframe/DFG elaborations
ommit 7/8c9bl8cel37/ffel228blf54da/fb4a3c81ab/610
ferge: df59e29 ce2eda?
Author: Alessandro Berti <a.berti@pads.rwth-aachen.de>

Tue Nov 20 16:27:43 2018 +0100

Merge branch 'develop’ into stochasticIntegration

207
: Alessandro Berti <a.bertillpads.rwth-aachen.de>
Tue Nov 20 16:26:05 2018 +0100

Bug fix

ommit df59e298151labffddl7cf7508247d18f2952655¢e
: 05ab813 468e344
~: Alessandro Berti <a.berti@pads.rwth-aachen.de>
Tue Nov 20 16:11:16 2018 +0100

Merge branch 'develop’' into stochasticIntegration
ommit 4bﬁez4403b005fbb1"'c1516"3ea3fb 7db307 3

author: Alessandro Berti .b @pads. rwth-aachen. de>
Tue Nov 20 16:08:33 2018 +0100

Log for a particular file

* Using the command git log —follow nomefile

Ps C:\Usersi\berti\pmdpy-source> git log --follow .\setup.py
commit 1049cab9c3105e07/83d9892d3291F593be8f5203

Author: Alessandro Berti <a.berti@pads.rwth-aachen.de>
Date: Fri Nov 16 14:56:30 2018 +0100

Revised set-up with process tree packages

commit d8e00fee89921c435dd86eece/16d1910e/d11242
Author: S.]1. van Zelst <s-j-v-zZelst@users.noreply.github.com:>
Date: Fri Nov 2 16:52:40 2018 +0100

Update the email of the author
Let's not give me all the credits for Ale's work :-)
commit 5a0c99e5f9f8412b416784a3ddacelaa/971d8d0

~: Alessandro Berti <javert@northwood.northwood. nets>
Fri Nov 2 08:35:34 2018 +0100

Removed transition system visualizer from release. Added setup.py file.

How to “delete” a local commit

* Sometimes we commit things that “we aim to have never
committed”.

* While physically the commit remains, it is possible to leave it as
unconnected nodes so future commits do not start from it.

* To “delete” in this way a local commit (that has not been pushed to
remote) it is enough to do git reset —hard shaidofcommit

* Then, changes have to be committed. This commit would take the
lead for the current branch.

How to retrieve a particular version of a file

* We have seen that the command git checkout accepts the name of a
branch. But a branch is effectively corresponding to a particular
commit so it’s possible to do git checkout shaidcommit in order to
retrieve the status of the repository at the given commit.

* It’s also possible to retrieve a specific version of a file with the
command git checkout shaidcommit interestingfile

* Changes to that version of interestingfile could be then committed to
the current branch.

How to compare current file on local system
with a specific version

* It is possible to use the command git diff shaidcommit filename

\pmd py-source\pmdpy\algo\discovery\a p1a\vers1ons git di) b b § 698c .\classic.py

diff -—-git a pm4py’a1qo’d1sco”ely’aWPha’"ers1ons’c1a551c py b/pmdpy, a]qo’d1sco”e|y’a1ph /versions/classic.py

index e58eae2..56de840 100644

——- afpm4pyfa1go’ scovery/alpha/versions/classic.py

+++ b/pmdpy/algo/discovery/alpha/versions/classic.py

def apply_dfg_sa_ea(dfg, start_activities, end_activities, parameters=None):
if pm_util.constants.PARAMETER_CONSTANT_ACTIVITY_KEY not in parameters
parameters [pm_util.constants.PARAMETER_CONSTANT_ACTIVITY_KEY] = 1og util.xes.DEFAULT_NAME_KEY

labels = set()
for el in dfg:
Tabels.add(el[0])
def apply_dfg_sa ea(dfg, start_activities, end_activities, parameters=None):
labels.add(a)
labels = list(labels)

alpha_abstraction = alpha_classic_abstraction.ClassicAlphaAbstraction(start_activities, end_activities, dfg,
activity_key=parameters[)
PARAMETER_CONSTANT_ACTIVITY_KEY])

How to know who to blame inside your team
for a bug ©

* It is enough to do git blame file_name

* Each row has an assignee so it is clear who have added the particular
row

Important file: .gitignore

* For certain files, it may be useless to include them in the version
control:
e Saved output files (may be big)
* Compiled files (.class, .0)

* A .gitignore file could contain the names of the files not to include in
the git status representation, or some regular expressions (e.g. *.o for
avoiding .o files to be included)

Submodules

* https://git-scm.com/docs/git-submodule

* Include physically other projects inside your project by reference.
* The simplest deployment could be git submodule add repository_url

* Then, a .gitmodules file is created and the config file inside the .git
directory is updated with information about the position of the
repository.

* Following that, these instructions need to be deployed:
» git submodule init
* git submodule update

https://git-scm.com/docs/git-submodule

Submodules

* If the following commands are deployed:
* git submodule add https://github.com/pm4py/pm4py-source.git

* git submodule init
* git submodule update

* Then a pm4py-source folder is created where, in the internal content,
the PM4Py project is included.

* If we operate inside the pm4py-source, commits are touching THAT
repository.

https://github.com/pm4py/pm4py-source.git

Remote branches

* For now, we have worked on local branches.

* Even at local level, git is powerful enough to ease developers life:
* Version control
* Branches

e But the power of git is to enable collaboration among people of a team.

* A remote repository is a repository that is not necessarily on your local
machine, that can sync the local repository or be synced from the local
repository.

* |deally, remote repositories should be easily accessible by the members of
the team (notable examples could be Github, Bitbucket, Gitlab ...)

How to “get sync” with a remote branch

* git clone operation clones an exact copy of the remote repository in the
local machine. All the history of commits is included in the local repository.

* |t is possible to “connect” a local repository with a remote repository in a
later stage. In that case, the following command needs to be deployed:

* git remote add origin urloftherepository

e After adding a remote reference to the repository, it is possible to pick its
commits (and so, the branches) with the command git fetch —all.

* These would not be added automatically to the local branches. If that is
intended, then the command git pull —all is what is needed.

Git fetch --all

* You can see both local and remote branches.

alpha-certification
archaic
bpmnIntegration

hotfixes
master
release
stochasticIntegration
-> origin/master

PULL vs PUSH

* PULL operation: | take remote commits to my local repository

* PUSH operation: | take local commits and | send them to the remote
repository.

* |t’s always better to pull before pushing ©

* If there are commits in the remote repository that are not in the local
repository, the push operation will fail and we are reminded to pull

* When the pull happens, if there are new commits in the remote
repository, the “commit DAG” is changed accordingly.

* As the merge of branches, also the pull can cause conflicts.
e Conflicts need to be resolved in the same way.

Pushing from a local branch that does not
exist remotely

* In this case, git push itself would fail.
* The right command is: git push —set-upstream origin namebranch

* This creates a correspondence between the namebranch (local
branch) and the remote branch origin/namebranch

Remove a commit that has been pushed to
the remote repository

* In this case, the command git revert shaidofthecommit shall be used.

A commit shall happen, where files of the commit are reverted to the
previous status.

* The old commit would still appear in the git log but will then look

unconnected in the DAG (so in practice they won’t turb lives
anymore).

Removing a remote branch

e After merging (through git merge) and removing the local branch (git
branch —d ...) one may wonder how to remove the branch from the
remote repository.

* Actually, this is possible through the command git push origin
:deletedbranchname

* To delete locally a branch that has been removed remotely, it is
possible to use the command git fetch -p

Example: Github

* On Github, | can create a new remote repository. After that, | could
clone it and work as described.

* If | need to work on a project to which | do not have access privileges,
| could:
* Fork it

e Do the changes on “my own” repository (that is a clone of the other
repository).

* Do a pull request

* A pull request is a request that reaches the creator(s) of the original
project in order to make your changes accepted.

