
Statistical Sampling in Process Mining Discovery

Alessandro Berti

SIAV
Italy, 35030 Rubano (Padova)

Email: alessandro.berti89@gmail.com

Abstract—In this paper, we propose some ideas related to the
application of Statistical Sampling techiques to simplify the
application of a Process Discovery algorithm to big amounts of
data. Much of the information about the business process could
be indeed discovered by analyzing only a small amount of events,
making useless the application of the algorithm to the entire data
set.

Keywords–Process Mining; Statistical Sampling; Big Data.

I. INTRODUCTION

Process Mining [1][2][3] is related to the discovery of
information about business processes, and there are several
techniques proposed for Business Process Discovery [4], Busi-
ness Process Conformance [5], Business Process Prediction
[6]. A recent field of research is about the application of
Process Mining to big amounts of data [7][8][9]. We can cite
some approaches to process discovery using GPU computing
[10], Hadoop MapReduce [11], and an approach to streaming
process data using Amazon Kinesis [12]. An open question
is how much of the collected data is necessary for a Process
Discovery algorithm in order to discover the process schema.
In this paper, we propose some ideas about the use of sta-
tistical sampling to event logs that means applying a Process
Discovery algorithm only on some process instances, e.g., a
small amount of the collected data. The paper is organized as
follows: Section 2 introduces a process discovery algorithm,
Section 3 shows a method to apply statistical sampling to the
process discovery algorithm introduced in Section 2, in Section
4 there are some measures in order to evaluate the soundness
of the approach proposed in Section 3.

II. BACKGROUND

A widely used Process Discovery technique is Heuristics
Miner [13][14]. The algorithm, given as input the event log,
works calculating a dependency measure between activities:

dep(A,B) = |A => B| = |A > B| − |B > A|
|A > B|+ |B > A|+ 1

Where |A > B| is the count of occurrences in the log where
an event with activity A is followed by an event with activity
B, and |B > A| is the count of occurrences in the log where
an event with activity B is followed by an event with activity
A. This dependency threshold is comprised between -1 and 1.
Activities A and B are considered in dependency if |A => B|
exceeds a dependency threshold. If two activities A and B are
in dependency, then in the resulting process model, there is an
edge connecting activity A and activity B.

III. METHOD

Applying the Heuristics Miner process discovery algorithm
only to a small subset of the event log, the output might
comprise:

• Some activities that are in clear dependency (e.g., the
dependency value is very near to 1).

• Some activities that are not in dependency (e.g., the
dependency value is below 0).

• Some activities that may be in dependency (might
be slightly above or slightly below the dependency
threshold).

The question is if the output of the application of Heuristics
Miner to the small subset of the log is reliable; that means
if the activities are in clear dependency in the small subset,
then they are in dependency on the entire event log, and if the
activities are not in dependency on the sample, then they are
not in dependency on the entire log. We have to examine the
following questions:

1) Is the subset of the log a representative sample of the
entire log?

2) Is the subset of the log big enough to infer the
dependencies?

To avoid taking an unrepresentative sample, random traces in
the log should be taken. Indeed, taking the first traces in the
log (e.g., the traces that happened first) could be dangerous
as there could be a concept drift in the process [15][16]. This
could be granted using a random-access storage like Apache
HBase [17]. In order to reply to the second question, we
have to do some assumptions on the probabilistic distribution
of dependency values. If the dependency values calculated
on various random-taken subsets of the log follow a normal
distribution, then we can define a confidence interval on the
dependency value between activities A and B, given a sample
of size N (in the following formula, we denote with p the
value depsample(A,B)), as:

depentire(A,B) ∈

(
p− k

√
p(1− p)

N
, p+ k

√
p(1− p)

N

)
Where k is a constant given by the chosen confidence (for
example, k = 1.96 if we want a 95% confidence). The
formula means that the value of dependency on the entire
log depentire(A,B) is comprised (with a confidence given by
the value of k) in some interval centered on depsample(A,B).
For N → ∞, e.g., for a big sample size, we can see that
the interval length goes to 0 (this means that with a big
sample size we get a dependency value that is equal or
almost equal to the dependency value measured on the entire

41Copyright (c) IARIA, 2017. ISBN: 978-1-61208-542-5

eKNOW 2017 : The Ninth International Conference on Information, Process, and Knowledge Management

log). However, even for a smaller sample, if depsample(A,B)
exceeds by much the dependency threshold, we could be
quite sure that also depentire(A,B) exceeds the dependency
threshold, so a small subset of the log is enough to say that
A and B are in dependency. Our proposal to determine a
good sample size is described in the following algorithm that
starts with an empty sample. The algorithm adds iteratively N
traces (that are chosen randomly from the log) to the sample
until a stop condition is reached; in each step, dependency
measures between activities are calculated. The parameters of
the algorithm are: N that is the number of traces added in each
iteration; p that is described in the previous paragraphs; q that
is the probability of doing another iteration of the algorithm.

1) Add N random traces to the sample.
2) Calculate the dependency values (in the sample)

between activities.
3) For all activities that are in dependency on the sam-

ple, check the value inf = p− k
√

p(1−p)
N .

4) If for all activities that are in dependency on the sam-
ple, the value inf is above the dependency threshold,
then return the dependency set found on the sample.

5) If there is no couple of activities where the value inf
is above the dependency threshold, then do another
iteration of the algorithm.

6) Otherwise, do another iteration of the algorithm with
probability q and return the dependency set found on
the sample with probability 1− q.

The output of the previous algorithm is a sample whose size is
a multiple of N : if we do m iterations of the algorithm, then
the (final) sample size will be mN . The proposed algorithm
is probabilistic, as the produced sample is dependent on the
traces that are chosen during its execution.

IV. RESULTS AND CONCLUSION

The main assumption we have done on dependencies is that
they follow a normal distribution, chosen a random sample of
size N . We have checked this assumption (using Kolmogorov-
Smirnov) on two event logs: “Road Traffic Fine Management
Process” [18] (that contains 150370 traces) and “Receipt phase
of an environmental permit application process” [19] (that
contains 1434 traces). The process underlying these logs is
very regular (it is a “lasagna” process); while the normality of
dependencies in less regular, “spaghetti”, processes (as “BPI
Challenge 2015 Municipality 1” log [20]) is not equally clear.

There are several possible evaluation metrics of the sam-
pling method proposed in the previous section which are based
on several executions:

• (E1) Average (final) sample size as a fraction of the
entire event log. As example, if we have a log with
1000 traces, choose N = 100 and, after the execution
of the algorithm, we get a sample of size 4∗N = 400,
then E1 = 0.4.

• (E2) Average percentage of dependencies on the entire
log that are dependencies also on the sample.

• (E3) Average percentage of dependencies in the sam-
ple that are not dependencies on the entire log.

We can propose an evaluation of the algorithm on the “Road
Traffic Fine Management Process” and on the “Receipt phase
of an environmental permit application process” logs. We

have chosen 0.9 as dependency threshold, k = 1.96 for the
confidence interval and q = 1.0 as the probability of doing
another iteration of the algorithm. Moreover, we have chosen
N = 1000 as sample size for “Road Traffic Fine Management
Process” and N = 10 as sample size for “Receipt phase of an
environmental permit application process”. As the algorithm
is probabilistic (sample size is dependent on which traces are
chosen), it has been repeated on both logs for M = 1000 trials
(Monte Carlo algorithm) averaging the metrics values recorded
during the M executions.

For the “Road Traffic Fine Management Process” we have
obtained the following values in the average of the proposed
metrics: E1 = 0.024, E2 = 0.9540, E3 = 0.6154. For
the “Receipt phase of an environmental permit application
process” we have obtained the following values in the proposed
metrics: E1 = 0.0200, E2 = 0.9827, E3 = 0.2468. So in both
cases we can extract averagely over 95 % of the dependencies
with less than 3 % of the entire log. Evaluation metric E3
shows less good values, and some dependencies extracted on
the sample are not dependencies on the entire log.

The point behind this paper is that, even if Big Data
technology is becoming cheaper, unleashing such power to
analyze an event log may not be useful as a small sample could
still contain the dependencies we would find on the entire log.

REFERENCES

[1] W. M. Van der Aalst and A. Weijters, “Process mining: a research
agenda,” Computers in industry, vol. 53, no. 3, pp. 231–244, 2004.

[2] W. M. van der Aalst et al., “Business process mining: An industrial
application,” Information Systems, vol. 32, no. 5, pp. 713–732, 2007.

[3] W. Van Der Aalst et al., “Process mining manifesto,” in International
Conference on Business Process Management. Springer, pp. 169–194,
2011.

[4] J. E. Cook and A. L. Wolf, “Automating process discovery through
event-data analysis,” in Proceedings of the 17th international conference
on Software engineering. ACM, pp. 73–82, 1995.

[5] W. M. Van der Aalst and A. K. A. de Medeiros, “Process mining and
security: Detecting anomalous process executions and checking process
conformance,” Electronic Notes in Theoretical Computer Science, vol.
121, pp. 3–21, 2005.

[6] W. M. Van der Aalst, M. H. Schonenberg, and M. Song, “Time
prediction based on process mining,” Information Systems, vol. 36, no. 2
pp. 450–475, 2011.

[7] A. Vera-Baquero, R. Colomo-Palacios, and O. Molloy, “Business pro-
cess analytics using a big data approach,” IT Professional, vol. 15, no. 6,
pp. 29–35, 2013.

[8] W. M. Van Der Aalst, “Decomposing process mining problems using
passages,” in International Conference on Application and Theory of
Petri Nets and Concurrency. Springer, pp. 72–91, 2012.

[9] W. van der Aalst, “Process mining in the large,” in Process Mining.
Springer, pp. 353–385, 2016.

[10] J. Zhou, K.-M. Yu, and B.-C. Wu, “Parallel frequent patterns mining
algorithm on gpu,” in Systems Man and Cybernetics (SMC), 2010 IEEE
International Conference on. IEEE, pp. 435–440, 2010.

[11] H. Reguieg, F. Toumani, H. R. Motahari-Nezhad, and B. Benatallah,
“Using mapreduce to scale events correlation discovery for business
processes mining,” in International Conference on Business Process
Management. Springer, pp. 279–284, 2012.

[12] J. Evermann, J.-R. Rehse, and P. Fettke, “Process discovery from event
stream data in the cloud–a scalable, distributed implementation of the
flexible heuristics miner on the amazon kinesis cloud infrastructure.”,
2016

42Copyright (c) IARIA, 2017. ISBN: 978-1-61208-542-5

eKNOW 2017 : The Ninth International Conference on Information, Process, and Knowledge Management

[13] A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros, “Process
mining with the heuristics miner-algorithm,” Technische Universiteit
Eindhoven, Tech. Rep. WP, vol. 166, pp. 1–34, 2006.

[14] A. Burattin, “Heuristics miner for time interval,” in Process Mining
Techniques in Business Environments. Springer, pp. 85–95, 2015.

[15] R. J. C. Bose, W. M. van der Aalst, I. Žliobaitė, and M. Pechenizkiy,
“Handling concept drift in process mining,” in International Conference
on Advanced Information Systems Engineering. Springer, pp. 391–405,
2011.

[16] J. Carmona and R. Gavalda, “Online techniques for dealing with concept
drift in process mining,” in International Symposium on Intelligent Data
Analysis. Springer, pp. 90–102, 2012.

[17] M. N. Vora, “Hadoop-hbase for large-scale data,” in Computer science
and network technology (ICCSNT), 2011 international conference on,

vol. 1. IEEE, pp. 601–605, 2011.

[18] de Leoni, Mannhardt, “Road Traffic Fine Management
Process“. Eindhoven University of Technology. Dataset.
http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-
b699b47990f5, 2005

[19] Buijs, J.C.A.M., “Receipt phase of an environmental permit application
process (WABO)“, CoSeLoG project. Eindhoven University of Technol-
ogy. Dataset. http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-
70bc9e77dbe6, 2014

[20] B.F. van Dongen, “BPI Challenge 2015 Municipal-
ity 1“, Eindhoven University of Technology. Dataset.
http://dx.doi.org/10.4121/uuid:a0addfda-2044-4541-a450-

fdcc9fe16d17, 2015

43Copyright (c) IARIA, 2017. ISBN: 978-1-61208-542-5

eKNOW 2017 : The Ninth International Conference on Information, Process, and Knowledge Management

