
Using Recurrent Boltzmann Machines in the Detection of Process Drifts Using Several
Process Mining Perspectives

Alessandro Berti

SIAV
35030 Rubano PD

Email: alessandro.berti89@gmail.com

Abstract—In this paper is proposed an algorithm that uses
Recurrent Boltzmann Machines to detect concept drifts in Process
Mining event logs. The method is able to use several perspectives
(Control Flow, Resources, Data) in comparison to existing meth-
ods that are conceived to use a single perspective (Control Flow).
The approach has been tested on some artificial event logs and
on a real-life log.

Keywords–Concept Drift; Process Mining; Boltzmann Ma-
chines.

I. INTRODUCTION AND BACKGROUND

Process Mining [1] is a relatively new discipline related to
the discovery and the analysis of business processes starting
from event logs. These logs are organised in traces, that corre-
spond to single executions of the process (a process instance).
Each trace can contain several events, that can be described
by some attributes, like the organizational resource that has
performed the event, the activity that has been performed and
the timestamp. In most cases, events are instantaneous (so, only
the completion time of an activity is recorded), and a trace
could be briefly described (the Control-Flow perspective) by a
list of activities. A path is a succession of activities that can be
observed in traces. For example, if a trace can be described by
this list of activities: A,B,C,D,E; then the paths are AB, BC,
CD, DE. The start timestamp of a trace is the minimum of the
timestamps of its events; the end timestamp is the maximum
of the timestamps.

Process Mining algorithms are often hampered by concept
drifts in the underlying process, that are changes in the process
during the analyzed time interval. Some papers (like [2], [3],
[4]) have analyzed a way to cope with the drift in processes,
but the analysis is restricted to the Control-Flow perspective,
and ignore other information related to the process instance.
The Control Flow perspective is the list of activities performed
in order to complete a single business process instance. Other
perspectives are the data perspective and the resource per-
spective (people that are involved in the completion of the
instance). In this paper is described a way to detect the drift
in the underlying process that takes into account also the
other information related to business instances. The method
is based on the estimation, for each of the business instances,
of the probability that a concept drift has actually happened.
The algorithm is based on Recurrent Boltzmann Machines [5]
that are useful to model high dimensional sequences. Other
methods (like NADE [6]) are known to be able to detect the
probability to observe a given point; however, their application
is usually done point-by-point and ignores the the history of
the observed points (that are business instances). The proposed
approach is a necessary extension of the methods that take

in account only the Control Flow because they cannot detect
changes happening in other perspectives. In the Background
Section of this paper, Boltzmann Machines are presented.
In the Method Section, the proposed approach to detect the
concept drift is analysed. In the Results Section, some results
related to artificial and real event logs are presented.

II. BACKGROUND

Restricted Boltzmann Machines (RBM) are useful to learn
a probability distribution over a set of inputs and are based
on the concepts of visible and hidden binary units. Hidden
units are activated by the RBM, that works taking in input
a weighted sum of the visible units, applying a [0, 1]-valued
function and activating the hidden unit with a probability equal
to the function value. An energy function can be associated
with RBM, that is based on the visible and hidden units value;
a low energy configuration is preferred as the definition of the
energy function makes RBM useful for classification purposes
[7]. A well-known method for RBM training is Contrastive
Divergence [8]; basically, it is an iterative method for RBM
weights discovery that tries to minimise the difference between
the visible units and some temporary (binary) units whose
value is found by the inverse application of the RBM (in
this step, the hidden units become the visible units). RBM,
however, do not handle sequence of points as the hidden units’
activation depend only on the current iteration of visible units
(that are single points), and do not handle history. Recurrent
Boltzmann Machines are conceived to use the history of the
sequence, as the hidden units activation do not depend only
on the visible units but also on the previous states of the
hidden units. However, other papers (like [5]) can be relevant
for further information.

III. METHOD

The method is based on the construction of a sequence of
binary points (each one corresponding to an event log trace)
that is provided to a Recurrent Boltzmann Machine in order to
learn a meaningful representation of the sequence. The number
of hidden units has been set to be equal to the number of visible
units. The trace is being described in both the Control-Flow
perspective and the other perspectives:

1) The Control-Flow is described by the paths followed
in the trace.

2) Other perspectives are described by recording all the
different values for an attribute that can be seen in
the various events of the trace.

A binary representation, whose length is equal to the sum
of the number of different paths in all the traces of the



log and the number of different values for the considered
attributes in all the events of the log, can be obtained by
giving value 1 in a position that describes a path / attribute
value that is contained in the trace, and giving 0 otherwise. For
example, if there are the following two traces: Trace 1 (events:
A(Mike),B(Tom),C(Mike); paths: AB, BC; resources: Mike,
Tom), Trace 2 (events: A(Alex),D(Maria),E(Maria); paths: AD,
DE; resources: Alex, Maria); the binary representation could
be as follow: position 1 is relative to the presence of the path
AB, pos. 2 is relative to BC, pos. 3 is relative to AD, pos. 4 is
relative to DE, pos. 5 is relative to the resource Mike, pos. 6 is
relative to Tom, pos. 7 is relative to Alex, pos. 8 is relative to
Maria; the eventual representation is (1,1,0,0,1,1,0,0) for Trace
1 and (0,0,1,1,0,0,1,1) for Trace 2. The traces are considered
to be ordered by their start timestamp.

After building the sequence of binary points, the RBM
could be trained. The results of the training are then used
by “stopping before” the activation of the hidden units and
recording the activation function (probability) values. So, a
[0, 1]-valued vector can be obtained for each trace, that refers
to the probability of activation of the hidden units. From these
vectors, the maximum value is taken; in doing so, each trace
is described by a single probability value. Traces with a lower
value of probability are likely to show a concept drift in the
underlying process. This is because the RBM tries to learn
a representation that maximises the probability of a given
sequence, and at least one hidden unit for trace should be
activated with high probability. Considering also the previous
states of the sequence, a trace that follows the previous schema
shows usually a high value in the defined probability, while
traces that show a different schema produce lower values of
probability.

IV. RESULTS

The following artificial logs have been used in order to
evaluate the effectiveness of the method:

1) An event log that contains 1000 equal traces
(events: A(Mike),B(Tom),C(Mike); paths: AB, BC;
resources: Mike, Tom), and other 1000 equal traces
(events: A(Alex),D(Maria),E(Maria); paths: AD, DE;
resources: Alex, Maria).

2) An event log that contains 500 traces for each of the
following schemas:

• events: A(Mike),B(Tom),C(Mike); paths: AB,
BC; resources: Mike, Tom

• events: A(Alex),D(Maria),E(Maria); paths:
AD, DE; resources: Alex, Maria

• events: F(Billie),G(Louise),H(Billie); paths:
FG, GH; resources: Billie, Louise

• events: I(Barack),L(Francois),M(Barack);
paths: IL, LM; resources: Barack, Francois

3) An event log that contains 500 traces for each of the
following schemas:

• events: A(Mike),B(Tom),C(Mike); paths: AB,
BC; resources: Mike, Tom

• events: A(Alex),B(Maria),C(Maria); paths:
AB, BC; resources: Alex, Maria

• events: F(Billie),G(Louise),H(Billie); paths:
FG, GH; resources: Billie, Louise

• events: F(Barack),G(Francois),H(Barack);
paths: FG, GH; resources: Barack, Francois

The method is able to correctly identify concept drifts in all
the cases. The first two logs are very simple, as there is a
drift both in the Control Flow and the resources. The third
log shows changes in the resource set; existing methods for
concept drift in Process Mining (as [2], [3], [4]) would not
have been able to identify changes in this log.

The method has been tested also on a real-life event log,
that is “Receipt phase of an environmental permit application
process” [9] containing an interesting shift in the process.
Using Dotted Chart feature in ProM framework [10] you can
identify a change in the underlying process after the timestamp
31/03/2011, when some activities (T06 and T10) became
slightly less frequent. This shift has not been identified by
the method described in [2] as the change in the Control Flow
is not so great, but is identified by the proposed method taking
into account the other perspectives. Also the methods described
in [3] based on SVM, and [4] which is an improvement of [2],
fail to identify this change.

V. CONCLUSION AND FUTURE WORK

The proposed approach for the detection of concept drifts
takes into account several Process Mining perspectives and
correctly identifies process changes in the examined logs.
Further work is needed to classify the change points, as there
can be several drifts (reported in [2]): sudden drifts, gradual
drifts, seasonal drifts; also, other types of hidden units (as [11])
might produce better results.

REFERENCES

[1] W. Van Der Aalst, Process mining: discovery, conformance and en-
hancement of business processes. Springer Science & Business Media,
2011.

[2] R. J. C. Bose, W. M. van der Aalst, I. Žliobaitė, and M. Pechenizkiy,
“Handling concept drift in process mining,” in Advanced Information
Systems Engineering. Springer, 2011, pp. 391–405.

[3] R. Klinkenberg and T. Joachims, “Detecting concept drift with support
vector machines.” in ICML, 2000, pp. 487–494.

[4] D. Luengo and M. Sepúlveda, “Applying clustering in process mining
to find different versions of a business process that changes over time,”
in Business Process Management Workshops. Springer, 2011, pp. 153–
158.

[5] I. Sutskever, G. E. Hinton, and G. W. Taylor, “The recurrent temporal
restricted boltzmann machine,” in Advances in Neural Information
Processing Systems, 2009, pp. 1601–1608.

[6] H. Larochelle and I. Murray, “The neural autoregressive distribution
estimator,” in International Conference on Artificial Intelligence and
Statistics, 2011, pp. 29–37.

[7] H. Larochelle and Y. Bengio, “Classification using discriminative re-
stricted boltzmann machines,” in Proceedings of the 25th international
conference on Machine learning. ACM, 2008, pp. 536–543.

[8] M. A. Carreira-Perpinan and G. E. Hinton, “On contrastive divergence
learning,” in Proceedings of the tenth international workshop on artifi-
cial intelligence and statistics. Citeseer, 2005, pp. 33–40.

[9] J. Buijs, “Receipt phase of an environmental permit
application process (wabo), coselog project,” 2014. [Online].
Available: http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-
70bc9e77dbe6

[10] B. F. van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters, and
W. M. Van Der Aalst, “The prom framework: A new era in process
mining tool support,” in Applications and Theory of Petri Nets 2005.
Springer, 2005, pp. 444–454.

[11] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Confer-

ence on Machine Learning (ICML-10), 2010, pp. 807–814.


