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RELATIVE TRANSACTIVE MEMORY ESTIMATION: DEVELOPMENT AND TEST OF AN 

ECOLOGICALLY VALID FRAMEWORK   

 

ABSTRACT 

 

In this research we define a new construct, Relative Transactive Memory (RTM) which 

reflects ebbs and flows in Transactive Memory Systems (TMS).  We develop and test a 

theoretical framework for understanding the association between intra-collective Relative 

Transactive Memory and objective collective performance over time. Further, given 

established ecological limitations in the operationalization of TMS, our frame leverages 

information derived directly from organizational event logs. We test empirical relationships 

between Relative Transactive Memory, and collective reactivity to change and collectives’ 

capacity to focus on several discrete tasks contemporaneously. We conclude with a 

discussion of the theoretical and managerial implications of Relative Transactive Memory as 

an indicator of collective fitness.  

 

Keywords: transactive memory systems (TMS), relative transactive memory (RTM), event logs, 

ecological validity, longitudinal field test
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As competitive intensity (Ang, 2008) and dynamism (Simerly & Li, 2000) continue to 

rise, organizations have come to rely on teams and other collectives as a vehicle to generate 

nuanced responses to these obstacles and maintain competitive advantage (Kozlowski & Bell, 

2003; Salas, Stagl, & Burke, 2004).  Because of the central role collectives increasingly play, it 

is critical that organizations maintain an accurate, real-time understanding of their relative levels 

of fitness (Ruef, 1997), or capacity to adapt and respond to change.  However, it is difficult, if 

not impossible to establish useful diagnostic clarity through conventional end-of-quarter 

performance evaluations or occasional pulse-taking subjective survey assessments that can at 

best offer only snap-shot illustrations of collective fitness. 

In an effort to provide insight into fluctuations in collectives’ capacity to perform over 

time, we develop and test an ecologically valid, longitudinal framework for the evaluation of 

collective fitness that is derived from transactive memory systems (TMS) theory (Moreland, 

1999; Moreland, Argote, &Krishnan, 1996).  TMS is a shared cognitive directory that facilitates 

cooperative information encoding, storage, and division of expertise (Austin, 2003; Ellis, 2006; 

Lewis & Herndon, 2011; Zhang, Hempel, Han, & Tjosvold, 2007). TMS enables efficient 

allocation, retrieval and application of scarce personal and collective knowledge resources 

(Faraj & Sproull, 2000).  TMS can also help collectives retain and apply more task-critical 

knowledge, coordinate their interactions, and perform more effectively than collectives without 

a TMS (Austin, 2003; Lee, Bachrach, & Lewis, 2014; Lewis, 2003, 2004; Liang, Moreland, & 

Argote, 1995; Moreland, Argote, & Krishnan, 1996; Moreland & Myaskovsky, 2000; Zhang, 

Hempel, Han, & Tjosvold, 2007).  

However, despite its promise the TMS literature has adopted an exclusively static frame 

of reference for understanding derivative collective performance consequences.  Missing has 

been theory or research addressing variation in transactive memory over time, or evaluation of 
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collective performance consequences associated with transactive memory ebbs and flows.  We 

refer to these ebbs and flows as relative transactive memory (RTM).  Relative Transactive 

Memory is defined as intra-collective gains and losses in transactive memory over a period of 

time.  Although fostering and effectively managing knowledge is critical to collective 

performance (Argote & Miron-Spektor, 2011; Winter & Szulanski, 2001), little insight is 

currently available into the performance consequences of variation in this process over time. 

Further, measurement of TMS has emerged as a substantive conceptual issue in the 

domain.  TMS has been operationalized using a range of both indirect and direct measures (e.g., 

Lewis, 2003; Lin, Hsu, Cheng, & Wu, 2012; Maynard, Mathieu, Rapp, & Gilson, 2012; 

Moreland & Myaskovsky, 2000). As Ren & Argote (2011) noted, “In spite of general 

convergence in defining the concept of transactive memory systems, we observed significant 

divergence in measuring the concept. We identified five [different] sets of [indirect or scale 

based] established measures of transactive memory systems in the literature.” (2011, p. 212).  

In this research, we address two issues specifically.  First, with our introduction of the 

concept of Relative Transactive Memory, we seek to expand the TMS theoretical frame by 

developing and testing theory bearing on the collective performance consequences of TMS 

variation over time.  Without an explicit emphasis on change, theory building in the area is 

constrained to a static focus.  Second, in light of: 1) substantive variation in how TMS has been 

operationalized (Ren & Argote, 2011), and 2) inherent structural limitations associated with 

static snapshots of TMS (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003; Staw, 1975), we also 

approach measurement of variation in TMS over time in an ecologically valid way.   

We operationalize RTM using an algorithm based on evidence derived directly from 

embedded organizational event logs (Gaaloul, Bhiri, & Godart, 2004).  Because RTM is derived 

solely from indigenous information contained within event logs, with the algorithm we develop 
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RTM data is both easy to gather and managerially isomorphic. We propose that because: 1) 

collectives with greater TMS stability over time are likely to exhibit more functionally 

responsive reactivity to environmental change, and 2) these collective are likely to have the 

capacity to focus on more event instances contemporaneously, relative transactive memory 

(RTM) is a critical indicator of collective performance capacity over time. 

BACKGROUND AND THEORETICAL DEVELOPMENT 

Transactive Memory Systems 

We apply a transactive memory systems frame to contextualize our model. A great deal 

of effort has been devoted to understanding how intra-collective knowledge and resources are 

pooled and shared (Austin, 2003; Hollingshead, 1998, 2001; Lewis, 2003).  Knowledge 

management is a process whereby “distributed group members and their organizational 

colleagues locate, store, and retrieve the data, information and knowledge that they need for 

their individual and collective work.” (Hollingshead, Fulk, & Monge, 2002: 335). ‘Meta-

knowledge’ or  socially shared cognition (Moreland, Argote, & Krishnan, 1996) facilitates 

understanding of members’ knowledge and expertise and enables other members to identify 

whose knowledge is most relevant across performance contexts.  

TMS emerges when members develop insight into what other members know and know 

how to do. This can happen from members’ own perceptions or expectations (Hollingshead and 

Fraidin 2003), or often through task-related communications. This shared understanding or 

meta-knowledge facilitates the location and retrieval of information that over time contributes to 

a division of cognitive labor where group members assume responsibility for learning, 

remembering, and communicating information in distinct domains. Thus, TMS contributes to 

the emergence of efficiencies that are made possible by non-redundant information storage and 

retrieval and collective memory of the location of information (Lewis & Herndon 2011). 
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Transactive Memory Systems are undergirded by three principle attributes.  The first is 

differentiated expertise across members, which reflects the extent that members maintain 

specialized knowledge of distinct, complimentary features of collective responsibilities (Lewis, 

2003). The second, mutual reliance, is the degree that individual members rely on others’ for 

their domain-specific knowledge.  The third is the extent that members’ differentiated expertise 

can be coordinated as collectives carry out their responsibilities (Lewis, 2003). These attributes 

of TMS facilitate efficient information search and help to cut down on the loss of task-critical 

information as this can be transparently assigned in the most applicable member. The 

maintenance of discrete expertise domains also increases the cumulative knowledge available to 

collectives and can enhance collective performance (Austin, 2003; Lee, et al., 2014; Lewis, 

2003, 2004; Liang, et al., 1995; Moreland, et al., 1996, 2000; Zhang, et al., 2007).  

TMS Stability Over Time 

For TMS to function, two critical underlying mechanisms must be in operation: member 

knowledge acquisition in conjunction with timely and efficient inter-member information 

distribution and transmission (Løwendahl, Revang, & Fosstenløkken, 2001). Knowledge 

acquisition reflects collective dependence on new, specialized knowledge to deepen members’ 

capacity to function transactively.  Knowledge distribution and transmission promote 

information gathering efficiency, storage and retrieval by facilitating members’ access to a large 

volume of task-relevant information without members having to possess this task-critical 

information themselves (Wegner, 1987).  

As a collective phenomenon TMS depends on the division of labor in both individual 

(e.g., what individuals know) and collective memory (e.g., how effectively members locate and 

retrieve others' knowledge - Wegner, 1987).  While collective memory provides a structural 

framework for integrating and distributing collective expertise and knowledge, the value of this 
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architecture depends on continual updating of individual knowledge repositories. Although 

TMS requires “encoding, storing, and retrieving information” (Ren & Argote, 2011: 191), little 

is known about how this infrastructure is adapted to emergent environmental constraints or the 

consequences in changes in this infrastructure over time. Current, up-to-date knowledge 

repositories facilitate the maintenance of encoding routines that enable efficient knowledge 

exchanges that coincide with contemporary external demands.  

Thus, while TMS can enhance strategic routines (Argote & Ren, 2012), facilitate 

management of uncertain knowledge demands (Lewis, 2004), and improve collective 

performance (Ren & Argote, 2011), the system depends on an ongoing balance of members’ 

individual knowledge and collective awareness both of the location of this knowledge within 

the system and capacity to use it efficiently.  Instability in the processes and structures that 

undergird transactive memory systems over time represent a functional disruption in the 

coherence of the meta-cognition critical to TMS functioning.   

Instability can upset the functionality of TMS in three principle ways.  First, TMS 

functionality depends on differentiated expertise across members, which reflects the extent that 

members maintain specialized knowledge of distinct, complimentary features of collective 

responsibilities (Lewis, 2003). When instability is present in the processes and structures that 

undergird the TMS, members’ awareness of the domains maintained by other members and 

their judgment of the appropriate boundaries of their own domain responsibilities can begin to 

degrade.  In the presence of breaks in the transactive process, members are more likely to be 

unsure of where the most current knowledge/information in a particular area can be located.  

They also are likely to have uncertainty as to the extent of their own on-going responsibility for 

maintaining expertise in a particular area.  This uncertainty has several potential consequences.   
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When values of TMS fluctuate, members capacity to consistently establish to whom to 

go to seek the most current knowledge/information in a particular area is uncertain.  What also 

is uncertain is the extent that inforrmation conduits/expert sources that had been available at 

previous levels are available at any given point in time, at the level or depth at which they were 

previously available.  In light of dynamism in TMS, members actions, based on past levels of 

TMS are likely to be inconsistent with current levels within the collective. When TMS 

fluctuates, members also may not have the most current knowledge/information available to 

provide to other members who seek it from them – if, for example, TMS decreases.  In addition, 

members also may be more likely to expend time/energy deepening their expertise in domains 

that are overlapping with those of other members – i.e., if, for example, TMS increases. These 

consequences diminish the potential value of TMS. In constrast, stability in TMS facilitates 

consistency in knowledge/information acquisition and distribution patterns.    

Second, TMS functionality also hinges on mutual reliance, which is the degree that 

individual members depend on others’ for their domain-specific knowledge.  When instability is 

present in the processes/structures that undergird transactive memory, members are likely to be 

uncertain of the extent that other members can or will faithfully assume the role of expert they’d 

been relied on to play. The mutual dependence that is a hallmark of TMS develops over time 

and through repeated successful interactions and information exchanges.  It depends on feelings 

of trust and confidence.  Instability in the TMS can signal that these foundational expectations 

may be misplaced or unwarranted.  If levels of TMS decline, members may be less likely to 

seek expertise from other members and may, instead, rely on their own (more limited) expertise. 

If levels of TMS increase, members may inadvertantly underutilize expetise otherwise available 

from other member experts positioned to provide them with expert insight.  Stability in TMS 
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fosters consistency in the level(s) of expertise maintained – and leveraged – by members of the 

collective.     

Finally, TMS functionality depends on the extent that members’ collective differentiated 

expertise is coordinated as collectives complete tasks and responsibilities.  When instability is 

present in the TMS, the on-going tacit communications and interactions that are necessary for 

coordination of knowledge/expertise can be disrupted.  From the distribution side of the 

equation, members’ awareness of who is most likely to need their expertise, how this expertise 

can be most effectively packaged and transmitted, and in what sequence it is likely to be most 

useful can become clouded.  This can negatively impact the efficiency of the outward flow of 

relevant information from an expert to other members throughout the collective in need of their 

expertise.  From the application side of the equation, members are less likely to receive 

knowledge/information from the correct expert, this knowledge/information is less likely to be 

configured in the most useful way, and it also is less likely to be received in the most coherent 

sequence.  This also can negatively impact the on-going value or utility of the 

knowledge/information that members receive from experts as they do complete their tasks.  

Thus, because instability in the processes and structures that define transactive memory systems 

can negatively impact members’ differentiated expertise, mutual reliance, and 

knowledge/expertise coordination, we propose the following: 

 Hypothesis 1:The stability of Relative Transactive Memory diminishes when 

the structure of collectives changes (i.e., membership changes).  

 

 Hypothesis 2: The stability of Relative Transactive Memory is positively 

associated with collectives’ reactivity (i.e., inversely as the time required by a 

collective to adapt to new process instances). 

 

 Hypothesis 3:The stability of Relative Transactive Memory is positively  

 associated with collectives’ performance.  

 



RELATIVE TRANSACTIVE MEMORY              10 

 

METHOD 

Sample, Partecipants, Procedure 

In order to test the validity of the conceptual framework we propose,  we leverage the 

BPI Challenge 2012 event log as an archetypal event log. This publically available event log1 

encompasses events bearing on the application process for a personal loan or overdraft in a 

global financing organization. It is important here to note that there are few freely publically 

available (e.g., publishable) event logs. From this event log, we are able to extract a social 

network using the Working Together (WT) metric.  From  this social network we apply a 

clustering algorithm to discover definable collectives within the organization. The clustering 

algorithm we adopt for this purpose is the stabilized Label Propagation algorithm (see Xie & 

Szymanski, 2013). 

Analytical approach 

The principle assumption underlying  our approach is that the development of a function 

within a specific time interval [0,1] enables us to return the value of the Transactive Memory 

within a collective at a given point in time. Because of the nature of the context within which the 

framework is evaluated,  this function generates a value that is comparable within a collective 

over time. Given two instants in time, t1 and t2, the function allows us to establish when 

Transactive Memory is higher in the collective. We don’t set target values of TMS to be 

comparable across different collectives, because too many variables are present. This is the 

reason we refer to the focal predictive variable in our model as Relative Transactive Memory. 

In order to be ecologically coherent, the measure of RTM has to account for activities 

encompassed by the event log, and the employees in the collective for which we seek to calculate  

the relative transactive metric. Consistent with approaches reported in the literature (e.g., Chen, 

                                                           
1 On http://www.win.tue.nl/bpi/2012/challenge 
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Li, Clark, & Dietrich, 2013; Ellis, 2006; Robertson, Gockel, & Brauner, 2013) we propose to 

estimate transactive memory gains and losses through evaluation of dynamism in the following 

two elements of transactive memory:  

1. Specialization: when the collective has greater Transactive Memory,  

workers are specialized and have a defined core set of task-critical 

knowledge and information.  

 

2. Coordination: when the collective has greater Transactive Memory,  

  workers are coordinated through a stable work flow, and there is a more  

    systematic transaction of tasks.  

 

These characteristics can be measured through two quantities that we refer to as the 

Average Prevalence of Actions (APA) and the Average Prevalence of Handovers (APH).  These 

quantities provide a value (for the characteristic) in a given number of subintervals of the macro 

time interval in focus. We define RTM operationally as the average of APA and APH.  We first 

account for both specialization and coordination. We then explain how to find an optimal 

number of subintervals in the time interval. 

Event Logs and Social Networks  

The efficient transmission and application of information and knowledge within 

collectives is essential for the maintenance of competitive advantage (Teece, Pisano,  & Shuen, 

1997). The structure of the relationships between individuals embedded within collectives has a 

direct impact on their access to crucial knowledge (Baldwin, Bedell, & Johnson, 1997; Cross & 

Sproull, 2004; Klein, Lim, Saltz, & Mayer, 2004). The connections afforded by social 

relationships provide a foundation for “social capital” which has been defined as the sum of the 

actual and potential resources embedded within, available through, and derived from ties within 

networks of social relationships (Bourdieu, 1986; Burt 1992).  

In organization contexts (Van der Aalst, 2005) an understanding of the structure of extant 

social networks may be built based on evidence derived from event logs (Van der Aalst, et al., 
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2004; van Donegen, et al., 2005).  Event logs are formal collections of information reflecting on 

relationships between events happening in an organization. Information in event logs includes:  

• An event’s timestamp, which we refer to in this research as ϱt(e) where e is the event.  

• A process instance (which can also be called a case) in which an event is deployed, which 

in this research we refer to as ϱc(e) where e is the event).  

• An event’s originator (which is the specific employee who executes the event).  In this 

research we refer the originator as ϱw(e) where e is the event.  

Consistent with the approach reported by Carrington, Scott, and Wasserman (2005) we 

conceptualize a social network as a weighted graph G=(V,E), where:  

• nodes represent individuals (workers), and are identified by integers. Thus V, the set of 

nodes, is a subset of the set of natural numbers; 

 

• edges represent relations between workers, and are identified by couples e=(i,j) (where i 

and j are identifiers of nodes). The set of edges E is a subset of V×V;  

 

• weights are associated with each of the edges.These weights represent the strength of the 

relationship represented by the corresponding edge. Mathematically, they can be 

understood as functions from E to R. Given an edge (i,j)∈E the associated weight is 

denoted as w((i,j))∈R.  

 

To effectively build the social network, weights between 0 and 1 are assigned to 

relations among individuals.  This can be done by calculating a metric between individuals. In 

Van der Aalst et al. (2005), several metrics have been proposed, including  the following:  

• The Handover of Work (HoW) metric captures how many times the work of an individual 

for a process instance is followed by the work of another individual.  

 

• The Working Together (WT) metric captures how many times two individuals work 

together in any given process instance.  

 

In this research, because we build our framework on a transactive memory systems 

theory scaffold (Wegner, 1987; Wegner, Erber, & Raymond, 1991) we focus primarily on the 

Working Together (WT) metric between two individuals p1 and p2. WT(p1,p2) is the ratio of 

the number of instances in which both p1 and p2 execute an event, and the number of instances 
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contained in the log in which p1 executes events. The value of the metric is higher when 

individuals often collaborate. 

Once a social network has been defined, information can be mined from it, for example, 

through the use of a clustering algorithm.  A clustering algorithm groups individuals based on 

similarities in their work-related activity profile, to extract information about the structure of the 

relationships between employees in an organization (Newman & Girvan, 2004; Palla, Derényi, 

Farkas, & Vicsek, 2005; Lancichinetti, Fortunato, & Kertz, 2009). A clustering C of G is a 

family of subsets of V such that each node is assigned to exactly one cluster.  We can define a 

function C:V→N where C(v)=i⟺ v∈Si (v belongs to the cluster Si). Although multiple 

clustering algorithms have been published in the literature, (e.g., Blondel, Guillaume, 

Lambiotte, & Lefebvre, 2008; Raghavan, Albert, & Kumara, 2007; Geyer-Schulz, 2012; Liu, 

Kang, An, & Zhou, 2014; Ng, Jordan, & Weiss, 2001; Malliaros & Vazirgiannis, 2013; Palla 

et al. , 2005), unfortunately the majority of these work on undirected graphs. 

So, in order to use these algorithms on a directed graph, the graph would have to be 

transformed from a directed graph into an undirected graph (i.e. constraining edges (i,j) and (j,i) 

to have the same weight). Although with this transformation information about directionality is 

lost, this does not necessarily lead to the loss of information about relationships in the social 

network (for discussion, see Malliaros & Vazirgiannis, 2013). 

The availability of an event log, however, facilitates the generation of more (and richer) 

information than patterns of relationships contained in social networks extracted from activity 

metrics. With an event log, full insight is available into business processes, and it is possible to 

do a business process improvement (BPI) analysis (van Dongen et al., 2005). A potentially 

interesting analysis might, for example, incorporate instances of completion times. Instances 
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with higher duration are indicative of poorer performance (for example, breaking Service Level 

Agreements); while instances with lower duration can serve as a positive performance signal.  

The concept of low duration instances, which in Lean Manufacturing terminology 

(Staats, Brunner, & Upton, 2011; Stratton & Warburton, 2003) is referred to Lead Time, is the 

latency or delay between the initiation and execution of an event (Parasuraman & Alutto, 1984). 

Indeed, with a focus on a process, it is possible to calculate the average (avg) completion time 

of instances, and the standard deviation (std) of completion times.  Fixing a constant k (e,.g., 

k=1) to the equation, we can define  “Positive” instances as having a  duration below avg−k⋅std; 

“Normal” instances as having  duration between avg−k⋅std and avg+k⋅std.; and “Negative” 

instances as having a duration in excess of Lead Time, above avg+k⋅std.  

Measures 

Collective workload.  We define collective workload in a given sub-(time) interval as 

the number of process instances achieved by the collective in the sub-interval. 

Collective performance.  Collective performance is operationalized as the ratio between 

the percentage of process instances executed by the collective exceeding Lead Time, which is 

set to be avg+k⋅std with k=1.5, and the collective’s workload. Although other values for k are 

possible (e.g., k=1.0, k=3.0, k=6.0), our (compromise) choice for the value of k in the log is 

k=1.5. We make this choice because, with a value of k=1.0, almost 40% of process instances in 

the log would exceed this threshold, while with a value of k=2.0 less than 10% of process 

instances would exceed this threshold. However, with k=1.5 approximately 15% of process 

instances would exceed this threshold.  

Average Prevalence of Action.  We introduce a measure, APA or Average Prevalence of 

Action.  APA is high when a worker is specialized in the execution of a particular task. Being a 

temporal measure, a value for each sub-interval has to be set. Being a relative measure, we have 
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defined APA as varying from 0 to 1.  A value of 0 is assumed when prevalence is at its lowest 

level.  A value of 1 is assumed when prevalence is at its highest level.  The logic underlying 

APA is that each worker can do several things within a particular time subinterval.   

However, there can be one (or more than one) particular type of activity that is most 

prevalent, considering the number of times it is accomplished within a particular time frame.  

This measure is built in two steps.  First we build the average prevalence of actions among 

workers in the sub-intervals (APA_Prel). Second, we normalize the results obtained in the 

previous point in time (APA).  APA_Prel, for a given time interval, accounts for the percentage 

of events executed for the prevalent action and computes the average.  

For example, assume the collective has two workers, A and B.  During a specific time 

interval, Worker A executes Activity1 in 60% of events and Activity2 in 40% of events. 

WorkerB executes Activity1 in 45% of events and Activity2 in 55% of events.  With these 

distributions, APA_Prel for the focal interval is equal to (0.6+0.55)/2=0.575. This approach is   

implemented in Algorithm 1, which is used to calculate APA_Prel for each subinterval and can 

be found in Appendix 1.   

Building from the value of APA_Prel for each sub-interval, APA is simply the 

normalization of the value. It assigns a value of ‘0’ to the sub-interval with the least APA_Prel, it 

assigns a value of ‘1’ to the sub-interval with the highest value of APA_Prel, and an intermediate 

value in all other cases. The method implemented in Algorithm 2, which is used to calculate APA 

for each subinterval, can also be seen in the Appendix. 

Average Prevelance of Handover.  We introduce a second measure, Averrage Prevalance 

of Handover or APH, which is a defined quantity for each sub-interval that measures collective 

coordination.  The measure accounts for each instance executed by members of the collective, the 

numberr of handovers between different members of the collective, and the number of events in  
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the instance that were executed by members of the collective. 

 We then propose two algorithms.  The first (APH_Prel, see Algorithm 3 in the Appendix) 

calculates the ratio between the number of handovers made inside the collective and the number 

of events.  For example, consider a time interval where there is only one instance worked.  If that 

instance consists of events executed respectively by User A, User A, and User B, then the 

number of events is 3, the number of handovers between different members of the collective is 1, 

and the APH_Prel value for the interval is 1/3 or 0.33.  The APH algorithm (Algorithm 4 can be 

found in the Appendix) accomplishes normalization of the value. This is the algorithm used to 

calculate APH for each subinterval. Again, our goal here is to define a measure that is relative.  

It’s range extends from 0 to 1.  This value is higher when there are a lower number of handovers, 

and transactive memory is higher.   

Evaluating Relative Transactive Memory 

After defining measures of APA and APH that are built from input directly from the event 

log, the collective in focus, and the number of temporal subintervals, RTM for a given number of 

subintervals can be determined by averaging APA and APH.  This measure, depicted in 

Algorithm 5 (in the Appendix), accounts for both specialization and coordination.  A crucial 

conceptual issue is the determination of an optimal number of subintervals, in order to maximize 

information that RTM can provide (i.e. a precise localization of the points in time in which RTM 

is higher, or in which it declines).  

Our approach emerges from the recognition that there is a strong, negative correlation 

between RTM and the number of instances executed by members of the collective in each of the 

temporal subintervals. Working new instances requires the collective to reorganize to a certain 

extent.  As a consequence there is a shift in levels of Transactive Memory present in the 

collective.  Given a specified number of sub-intervals, it is possible to determine the number of 
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new instances worked by the group for each sub-interval using Algorithm 6 (as can be seen in the 

Appendix). The approach described in Algorithm 7 (also in the Appendix) is then used to try 

every possible number of temporal sub-intervals in order to maximize the negative correlation 

between RTM and the number of new instances occurring in each sub-interval.  We approach the 

search from a minimum to a maximum number of intervals, depending on the length of the time 

interval. For example, if the interval is 1 year,  we can search between 12 intervals (e.g., the sub-

interval is equivalent to a month) and 365 (e.g., each day is a discrete sub-interval). 

Evaluating Stability 

Relative Transactive Memory is reflected in the extent that substantive variations in RTM 

across focal time intervals are absent (e.g., RTM is broadly stable).  This is a function of 

variance.  In Algorithm 8 we propose to use the inverse of the variance as a measure of the 

Stability of RTM. Algorithm 8 can be found in the Appendix. 

Evaluating Reactivity 

Finally, we define reactivity as the time required by a collective to adapt to changes in the 

organization or to new process instances in the event log.  Our expectation is that we will 

uncover a significant negative assocation between values of RTM and the number of new process 

instances executed during the focal  time intervals. 

Given an array of RTM values, the method to evaluate reactivity  accounts for the average 

(time) distance between a local minimum and the next local maximum. This value is calculated 

using Algorithm 9 (in the Appendix).  A local minimum is a sub-interval in which RTM is lower 

than its neighboring sub-intervals (i.e. the value of RTM immediately prior to and the value of 

RTM immediately subsequent to the focal value).  A local maximum is a sub-interval in which 

RTM is higher than its neighbouring sub-intervals.  
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For example, if we consider 4 sub-intervals: A) in which RTM is 0.4, B) In which RTM is 

0.3, C) in which RTM is 0.5, and D) in which RTM is 0.2, then sub-interval B is a local 

minimum (as 0.3 < 0.4 and 0.3 < 0.5), while C is a local maximum (as 0.5 > 0.3 and 0.5 > 0.2).  It 

is critical to note here that, theoretically, there is a chance of neighboring values being equal. 

However, the probability of observing these equivalent values in a real event log (e.g., such as 

the BPI Challenge 2012 event log) is extremely low.  Here, all of the values of RTM in the sub-

intervals for the BPI Challenge 2012 event log were discrete. 

The distance is then calculated as the ratio between the difference of position between the 

local maximum, local minimum and the total number of subintervals.  In the example above, C is 

local maximum and is the 3rd subinterval, B is local minimum and is the 2nd subinterval.  Because 

the difference is 1 and the total number of subintervals is four, the ratio is ¼ = 0.25.  Algorithm 9 

takes into account all the distances between local maxima and local minima which are their 

predecessors, computes the average (which is a number between 0 and 1) and then the 

multiplicative inverse. The obtained quantity is high when local maxima are near to local 

minima, indicating high reactivity to change in the collective. 

RESULTS  

Preliminary analysis 

 

In the BPI Challenge 2012 event log there are two collectives with >3 workers.  We refer 

to these collectives as Group 1 and Group 2. Group 1 contains workers identified in the Event 

Log by the numbers 10861, 11180, 10982, 11254. Group 2 contains workers identified in the 

Event Log by the numbers 10138, 11179, 11269, 10125. 

For these two groups, we calculated RTM. We did this using Algorithms 5, 6, and 7 in 

order to determine the number of subintervals that maximizes the negative correlation between 

RTM and the number of new instances in each subinterval that were worked by members of each  

of the two groups. A depiction of RTM for both Group 1 and Group 2 is presented in Figures 1a 
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& 1b.  As can be seen from Figure 1a, for Group 1, the number of subintervals maximally 

negatively correlated with new instances in each subinterval is 71.  The correlation between RTM 

and the number of new instances is −0.716. As can also be seen in Figure 1b, for Group 2, the 

number of subintervals maximally negatively correlated with new instances in each subinterval is 

56.  The correlation between RTM  and the number of new instances is −0.216.  

----------------------------------------- 

Insert Figures 1a & 1b about Here  

----------------------------------------- 

Applying Algorithm 8, the results from our analysis reveal that Group 1 has a level of 

stability of 76.34, while Group 2 has a level of stability 51.55.  These results indicate that the 

Relative Transactive Memory in the first group is more stable than in the second group. 

Hypothesis Tests 

In Hypothesis 1, we predict that the stability of RTM diminishes when the structure of the 

collective changes.  As is made clear in Figure 1a, we see a strong, negative correlation in Group 

1 between RTM and the number of new instances executed by members of the group.  In 

constrast, what Figure 1b also makes clear is that the correlation between RTM and the number 

of new instances in Group 2 is substantially lower. This coincides with a change in the internal 

dynamics of the groups precipitated by the absence of worker 11179. Indeed, as can be seen in 

Figure 2, there are two substantial declines in RTM.  The first is positioned between 0.15 and 

0.25, and the second in the vicinity of 0.3.  

As can also be seen in Figure 2, worker 11179 disappears from the event log at the point 

of the first decline in RTM, and returns at the point in time coinciding with the second decline. 

This pattern is consistent with evidence from the literature (e.g., Peltokorpi, 2008) that TMS 

declines when group composition changes.  Thus, RTM appears to retain this attribute of TMS. 
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In constrast, as can be seen in the Figure 1b, there are no absences, and no sudden decreases in 

RTM.  This pattern of results provides support for the prediction made in Hypothesis 1. 

--------------------------------- 

Insert Figure 2 about Here  

---------------------------------- 

  In Hypothesis 2, we predict that stability of Relative Transactive Memory is positively 

associated with collectives’ reactivity (e.g., the time required by a collective to adapt to changes 

to new process instances). As can be seen in Figure 1a, Group 1 is both more stable and more 

reactive.  The RTM stability in Group 1 is  76.34, while the reactivity of the group is 43.29.  In 

contrast, the RTM stability of Group 2 is 51.55 while its Reactivity is 33.56. This pattern of 

results suggests that more stable RTM is positively associated with reactivity.  

  As can be seen comparing Figures 1a and 1b, at least for the two groups we evaluated, 

higher RTM stability is related to better reactivity. Applying the same algorithms reported 

above to the private event log of an organizational process that counts 221 workers, and in 

which there are several different collectives (e.g., the stabilized Label Propagation algorithm 

generated 38 discrete clusters), we can see that this trend is consistent with the pattern of results 

presented in Table 1. These results provide additional support for Hypothesis 2. 

-------------------------------- 

Insert Table 1 about Here  

--------------------------------- 

Finally, in Hypothesis 3 we predict that the stability of RTM is positively associated with 

collectives’ performance. As can be seen in Figure 3, while Group 1 has a greater workload, it 

also has an approximately equivalent percentage of process instances exceeding Lead Time 

(which we have set to be avg+k⋅std, with k=1.5).  This can be seen comparing Figures 1a and 1b. 

From this pattern of results, we conclude that RTM stability is positively related to stronger 
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collective performance.  Collectives with more stable RTM are more capable of efficiently 

coping with a higher workload. This pattern of results provides support for Hypothesis 3. 

--------------------------------- 

Insert Figure 3 about Here  

--------------------------------- 

DISCUSSION 

In this research we focus on longitudinal dynamism in TMS.  We also introduce the 

concept of Relative Transactive Memory.  Building directly from transative memory systems 

theory (Wegner, 1987; Wegner, et al., 1991), and empirical evidence from the literature (e.g., 

Peltokorpi, 2008), we find that the stability of RTM diminishes when the structure of the 

collective in which it is evaluated changes. This pattern of results points to the core role played 

by the social context within which TMS can emerge for understanding ebbs and flows in 

Transactive Memory Systems over time.     

In this research we also explore the capacity of collectives to respond to environmental 

change. We find that the stability of intra-collective RTM is associated with collectives’ 

reactivity; or inversely as the time to adapt to changes to new process instances.  These results 

provide support for Hypothesis 2, and from foundational theory in the domain (Lewis & 

Herndon, 2011) speak to the importance of consistency in collectives’ knowledge infrastructure 

and meta-knowledge for responding to environmental dynamism (Simerly & Li, 2000).  Finally, 

critical to the utility of the approach we describe, in support of Hypothesis 3 we also find that 

collectives with more stable RTM are capable of efficiently coping with higher workloads than 

collectives with less stable Relative Transactive Memory.  This suggests that RTM can be a 

critical indicator of collectives’ fitness  - or capacity to perform - over time (Ruef, 1997). 

Theoretical Implications 
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Our principal goal in this research was to introduce an element of dynamism into the 

theoretical infrastructure informing research and theory building in the TMS area.  The 

framework we report suggests that there may be utility in conceptualizing TMS as an inherently 

dynamic infrastructure.  A transactive memory system can emerge in collectives when members 

develop insight into what others know and what they are able to do. This awareness can derive 

from explicit information such as past performance records (Moreland & Myaskovsky 2000), 

from subjective perceptions or expectations (Hollingshead & Fraidin 2003), or through task-

related communication. This shared understanding is crucial for the development of a TMS 

(Moreland, 1999; Moreland et al. 1996, 1998; Wegner 1987).  

However, rather than emerging – and remaining – at a constant or near constant level, 

what is clear is that the processes and structures reflective of TMS (Lewis, 2003) can and do vary 

intra-collectively over time.  Further, these variations also appear to have substantive 

implications for both how well collectives are capable of responding to enviromental change and 

also how well these collectives are able to perform.  In light of this variation, it will be important 

for future research and theory-building to continue to focus on the dynanism inherent within 

TMS to more fully articulate the nature of these ebbs and flows.  Understanding how TMS 

changes, and perhaps more importantly why it changes over time, will be a critical next step.  

Practical Implications 

 There are inherent basic architectural limitations associated with evaluating complex 

intra-collective structures and processs, using either direct or indirect approaches (e.g., Ren & 

Argote, 2011), at a single point in time (Lindell & Whitney, 2001; Podaskoff et al., 2003).  The 

snapshot of action captured using a single survey, or observational event (e.g., Ellis, 2006; 

Moreland & Myaskovsky, 2000) is definitionally static and as a consequence doesn’t allow for 

the development of inferences bearing on change over time.  Moreover, managers provided with 
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evidence of TMS at a single point can’t know whether this value is trending upward or 

downward.  As a consequence, managers can derive no diagnostic clarity as to the relative fitness 

of the collective for which they are responsible, whether to either arrest a negative trend or 

support a positive trend, or how to support the group.  

Further, functionally intrusive data collection events also can ipso facto substantively 

impact the focal processes under observation.  Through the mere fact of measurement itself 

(Dholakia & Morwitz, 2002; Morwitz & Fitzsimons, 2004) the picture managers are able to 

generate as to the condition of their work group can be biased.  What we propose is a 

straightforward, ecologically valid, non-intrusive, longitudinal method that can in real-time 

provide practicing managers with embedded insight into the relative fitness of the collectives 

they lead. Because this approach is based on indigenous organizational data, it can be used to 

define and orchestrate meaningful, substantive collective peformance interventions.      

Study Limitations 

 Of course, as with all empirical research, the conclusions we are able to draw - and the 

applicability of the approach we define – is constrained by limitations of the design of our study.  

While the use of event logs carries with it the substantial benefits described above, this is also a 

limitation in the possibile application of RTM as a diagnoistic vehicle. The reality is that only a 

relatively small (and only slowly increasing) number of organizations have established a level of 

process awareness such that they record events automatically in event logs; or use them either for 

business analysis and for business process intelligence. Moreover, there are only few freely 

available event logs (one of them being the BPI Challenge 2012 log used in this research).  

A second limitation in the use of event logs is that we can’t know more than what is 

actually incuded in the log.  So, although we may discover functionally meaningful groups 

through the use of a clustering algorithm, we can’t develop inferences bearing on other 
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potentially critical collective performance variables such as levels of cohesiveness (e.g., Mullen 

& Cooper, 1994), social identity (e.g., Ashforth & Mael, 1989) or psychological safety (e.g., 

Edmondson, 1999).  What we also can’t develop inferences about through the use of event logs is 

the ways in which the members of focal collectives actually share task-critical knowledge and 

information.  Thus, while estimation of the levels of intra-collective TMS through the use of the 

RTM approach we describe appears to provide a functional working model, it clearly will require 

additional development for its full potential to be realized. 

Conclusions 

In this research, we approach the evaluation of collective fitness through a transactive 

memory systems lens.  Moreover, we also address the collective performance implications of 

dynamism in the processes and structures that undergird TMS.  We adopt a novel avenue to 

evaluate transactive memory that has substantive managerial applicability.  We find that intra-

collective transactive memory systems can be dynamic.  We also find that the stability of 

Relative Transactive Memory can have substantive implications for collectives’ capacity to both 

deal with environmental change and to perform effectively. Because of these relationships, it is 

essential that theory and research in the transactive memory systems area expand current 

conceptualizations to encompass inherent intra-collective dynamism in TMS.
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Table 1:  Relative Transactive Memory stability and reactivity estimation on a private 

(larger) event log. Only work groups (based on the Working Together metric and applying 

the stabilized Label Propagation algorithm for clustering) with >= 6 members are reported. 

As can be seen in the table, work groups with greater stability also have typically greater 

reactivity (the correlation between stability and reactivity is σ = .44). 



RELATIVE TRANSACTIVE MEMORY              31 

 

 

 

 

Figure 1a:  In the left graph, the darker line is the Relative Transactive Memory for Group 1, for 

each of the time sub-intervals. The lighter line is the percentage of instances exceeding Lead 

Time (avg+k⋅std, with k=1.5). The right histogram reflects  the number of new instances for each 

subdivision. As can be seen in the figure, there is a strong high negative correlation between 

RTM and the number of new instances. 
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Figure 1b:  As with Group 1, in the left graph the darker line reflects the RTM for Group 2 for 

each of the time subintervals. As can be seen here, RTM is less stable than it is in Group 1. The 

lighter line reflects the percentage of instances exceeding Lead Time (avg+k⋅std, with k=1.5). 

The right histogram illustrates the number of new instances for each subdivision. As can been 

seen in the figure, there is negative correlation between RTM and the number of new instances.
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Figure 2:  Number of events executed by worker 11179 in each of the temporal intervals. We 

suspect that this worker is responsible for the sudden decline in RTM evident in Group 2.
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Figure 3:  Number of instances worked by each group (histogram on the left side refers to Group 

1, while histogram on the right side refers to Group 2) in each of the time subintervals. Group 1 

has a typically higher workload than Group 2. 
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APPENDIX 

 

 

Algorithm 1: to calculate the APA_Prel measure. 

 

 

Algorithm 2: to calculate the APA measure. 

 



RELATIVE TRANSACTIVE MEMORY              36 

 

 

Algorithm 3: to calculate the APH_Prel measure. 
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Algorithm 4: to calculate the APH measure. 

 

 

Algorithm 5: to calculate RTM for each subinterval, given a specified 

number of subintervals. 
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Algorithm 6: to calculate the number of new instances worked by the  

group for each subinterval, given a number of subintervals. 

 

 

       Algorithm 7: to calculate RTM with optimal number of  subintervals. 
 

 

 

                                    Algorithm 8: to calculate the stability of RTM. 
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Algorithm 9: to calculate collective reactivity given an array of values of RTM. 

 

 


